
 Advanced search

Linux Journal Issue #21/January 1996

Features

An Introduction to Python by Jeff Bauer
Do you need help in the rapid development of applications? Jeff
explains why Python could be the language for you.

Using Linux and DOS Together by Marty Leisner
Taking the pain out of installing Linux on a machine for the first
time.

News and Articles

CVS: Version Control Beyond RCS by Tom Morse
Ever have conflicts when more than one person works on the
same file? CVS offers a solution.

The Quintessential Linux Benchmark by William van Dorst
All about the “BogoMips” number displayed when Linux boots.

Columns

From the Publisher WEBsmith
Letters to the Editor
From the Editor
Linux Systems Administration Maximizing Linux Security, Part I
New Products
Take Command The chmod Command
Kernel Korner Linux on Alpha AXP
Book Review Linux Universe

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
https://secure2.linuxjournal.com/ljarchive/LJ/021/1121.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/1137.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/1118.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/1120.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/5544.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/0091.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/0089.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/1170.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/0090.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/1190.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/1202.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/0085.html

Directories & References

Upcoming Events
Consultants Directory

Archive Index

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/021/0092.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/consult.html
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

An Introduction to Python

Jeff Bauer

Issue #21, January 1996

Python is an extensible, high-level, interpreted, object-oriented programming
language. Ready for use in the real world, it's also free.

If you've been programming on a Linux system, you may be coding in C or C++.
If you're a systems administrator, you may be programming in perl, Tcl, awk, or
one of the various (sh/csh/tsh/bash) shell scripting languages. Maybe you wrote
a script to do a particular job, but now find that it doesn't scale up very well.
You might be writing C applications, but now wish you didn't have to be bogged
down in the low-level details. Or you may simply be intrigued by the possibility
of doing high-level, object-oriented programming in a friendly, interpreted
environment.

If any of the above applies to your situation, you may be interested in Python.
Python is a powerful language for the rapid development of applications. The
interpreter is easily extensible, and you may embed your favorite C code as a
compiled extension module.

Python is not one of the research languages which seem to get promoted solely
for pedagogical reasons. It is possible to do useful coding almost immediately.
Python seems to encourage object-oriented programming by clearing the
paths, rather than erecting parapets.

Getting Started

To execute the standard hello program, enter the following at the command
line:

$ python
Python 1.2 (Jun 3, 1995) [GCC 2.6.3]
Copyright 1991-1995 Sitchting Mathematisch Centrum, Amsterdam
>> print "hello, bruce"
hello, bruce
>> [CONTROL]-D

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Most Python programs, though developed incrementally, are executed as a
normal script. The next program illustrates some extensions to the original. The
new version will identify who you are based on your user account in /etc/
passwd.

 1 #!/usr/local/bin/python
2
3 import posix
4 import string
5
6 uid = `posix.getuid()`
7 passwd = open(`/etc/passwd')
8 for line in passwd.readlines():
9 rec = string.splitfields(line, `:')
10 if rec[2] == uid:
11 print `hello', rec[0],
12 print `mind if we call you bruce?'
13 break
14 else:
15 print "I can't find you in /etc/passwd"

A line-by-line explanation of the program is as follows:

• 1 --- Command interpreter to invoke
• 3-4 --- Import two standard Python modules, posix and regsub.
• 6 --- Get the user id using the posix module. The enclosing backticks (`) tell

Python to assign this value as a string.
• 7 --- Open the /etc/passwd file in read mode.
• 8 --- Start a for loop, reading in all the lines of /etc/passwd. Compound

statements, such as conditionals, have headers starting with a keyword (if,
while, for, try) and end with a colon.

• 9 --- Each line in /etc/passwd is read and split into array rec[] based on a
colon : boundary, using string.splitfields()

• 10 --- If rec[2] from /etc/passwd matches our call to posix.getuid(), we
have identified the user. The first 3 fields of /etc/passwd are: rec[0] =

name, rec[1] = password, and rec[2] = uid.
• 11-12 --- Print the user's account name to stdout. The trailing comma

avoids the newline after the output.
• 13 --- Break the for loop.
• 14-15 --- Print message if we can't locate the user in /etc/passwd.

The observant reader will note that the control statements lack any form of
BEGIN/END keywords or matching braces. This is because the indentation
defines the way statements are grouped. Not only does this eliminate the need
for braces, but it enforces a readable coding style. No doubt this design feature
will turn off a few potential Python hackers, but in practice, it is useful. I can
think of numerous times I've spent tracking bugs in C resulting from
misinterpreting code that looked like any of these fragments, usually deeply
nested:

if (n == 0)
 x++;
 y--;
z++;

if (m == n || (n != o && o == q)) { j++; }
 k++;
q = 0;
while (y--)
 *ptr++;
 if (m == n) {
 x++;
 }

A coding style enforced in the language definition would have saved me much
frustration. Python code written by another programmer is usually very
readable.

Libraries

You might object that we did a lot of work in the program above just to
demonstrate Python language features. A better method would be to use the
pwd module from the standard Python library:

print `hello', pwd.getpwuid(posix.getuid())[0]

This points out another nicety about Python that is critical for any new
language's success: the robustness of its library. As mentioned earlier, you may
extend Python by adding a compiled extension module to your personal library,
but in most cases you don't have to.

Take the ftplib module for instance. If you wanted to write a Python script to
automatically download the latest FAQ, you can simply use ftplib in the
following example:

#!/usr/local/bin/python
from ftplib import FTP
ftp = FTP(`ftp.python.org') # connect to host
ftp.login() # login anonymous
ftp.cwd(`pub/python/doc') # change directory
ftp.retrlines(`LIST') # list python/doc
F = open(`python.FAQ', `w') # file: python.FAQ
ftp.retrbinary(`RETR FAQ', F.write, 1024)
ftp.quit()

Python has numerous features which make programming fun and restore your
perspective of the design objectives. The language encourages you to explore
its features by writing experimental functions during program development.
Several notable Python features:

• Automatic memory management. No malloc/free or new/delete is
necessary—when objects become unreachable they are garbage-
collected.

• Support for manipulating lists, tuples, and arrays

• Associative arrays, referred to as “Dictionaries” in Python
• Modules to encourage reusability. Python comes with a large set of

standard modules that may be used as the basis for learning to program
in Python.

• Exception handling
• Classes

Python Has Real Class

With the next example, I'll try to demonstrate some of these features. The
StackingThings class will allow the user to stack items on top of each other until
a breaking point is reached.

1 #!/usr/local/bin/python
2
3 StackingException = `StackingException'
4
5 class StackingThings:
6 names = (`llama', `spam', `16 ton weight',
7 `dead parrot')
8 weights = {}
9 weights[`llama'] = 300
10 weights[`spam'] = 1
11 weights[`16 ton weight'] = 32000
12 weights[`dead parrot'] = 2
13 breakpt = {} # breaking points
14 breakpt[`llama'] = 200
15 breakpt[`spam'] = 1000
16 breakpt[`16 ton weight'] = 1000000
17 breakpt[`dead parrot'] = 15
18
19 def _ _init_ _(self):
20 self.items_stacked = []
21 def add(self, item):
22 if item not in self.names:
23 raise StackingException, \
24 item+`not a stackable object'
25 self.items_stacked.insert(0, item)
26 try:
27 self.test_strength(item)
28 except StackingException, val:
29 print item, val
30 def test_strength(self, item):
31 wt = 0
32 bp = 1000000
33 for i in self.items_stacked:
34 wt = wt + self.weights[i]
35 if wt > bp:
36 self.items_stacked.remove(item)
37 raise StackingException, \
38 `exceeds breaking point!'
39 bp = self.breakpt[i]
40
41 # user code to test StackingThings class
42
43 s = StackingThings()
44
45 s.add(`llama')
46 s.add(`spam')
47 s.add(`spam')
48 s.add(`spam')
49 s.add(`dead parrot')
50 s.add(`16 ton weight')
51
52 print `items stacked = ', s.items_stacked
53
54 try:

55 s.add(`bad object')
56 except StackingException, msg:
57 print `exception:', msg

This script produces the following output:

16 ton weight exceeds breaking point!
items stacked = [`dead parrot', `spam', `spam',
 `spam', `llama']
exception: bad object not a stackable object

The StackingThings class itself consists of 3 methods: _ _init_ _(), add(), and
test_strength(). When initiating StackingThings, we use the special __init__

method to create its initial state by initializing the list of stacked items:
items_stacked = []. The add() method is essentially the only method that is
accessed by the user of StackingThings. And test_strength() is called by add() to
verify that we have not exceeded our breaking point.

The first argument to each method in our example is called self. This is just a
convention, but it makes our code much more readable. The first argument to
a Python method is used in a somewhat similar fashion as this keyword in C++.

Python provides for exception handling, both built-in (i.e. ZeroDivisionError,
TypeError, NameError, etc.) and user-defined exceptions. The latter is especially
useful in developing robust classes. Python uses the try/except syntax for
exception handling:

try:
 DenominateZero()
except ZeroDivisionError, val:
 print `Whoops:', val

Our add() method is used to try an exception in test_strength() and raise an
exception when we pass it an illegal stacking item.

Two of the built-in methods for Python lists that are demonstrated in the
example on lines 25 and 36 are insert() and remove(). Other supported
operations on list objects include append(), count(), index(), reverse(), and sort().

The data attributes may be accessed by the methods of the class as well as the
user code: Either print self.names (within a class method) or print s.names

(from the user code) will print the list of legal stacking things:

[`llama', `spam', `16 ton weight', `dead parrot']

Look It Up!

Dictionaries (associative arrays to all you awk/perl hackers) are one of the most
useful Python data types. Unlike a normal array, which is indexed by number,

associative arrays are indexed by strings. The value of this utility is worth
describing in some detail.

I frequently deal with ICD-9-CM codes in medical applications. These codes are
usually numeric, but sometimes alphanumeric. They usually have a decimal
point, but sometimes don't. Some of the codes may be further sub-divided into
additional ICD-9 codes. Furthermore, codes are added and deleted periodically,
but most don't change. Normally, the lookup of ICD-9 codes will be done in a
relational database, but it is also convenient to use small data sets within an
application. For example, given the dictionaries icd9 and subdivide:

 x subdivide[x] icd9[x]
 --- ------------ -------------------------
 `692' 1 `Contact dermatitis'
 `692.0' 0 `Due to detergents'
 `692.2' 0 `Due to solvents'
 `692.7' 1 `Due to solar radiation'
 `692.70' 0 `Unspecified dermatitis'
 `692.71' 0 `Sunburn'
 `692.72' 0 `Other: Photodermatitis'

We can manipulate the ICD-9 codes in the following manner:

for code in icd9.keys():
 if subdivide[code]:
 print `ICD-9',code,'may be further subdivided'
 else:
 print `Description for',code,`is:',icd9[code]

This would produce the following output:

ICD-9 692.7 may be further subdivided
Description for 692.70 is: Unspecified dermatitis
Description for 692.0 is: Due to detergents
ICD-9 692 may be further subdivided
Description for 692.71 is: Sunburn
Description for 692.2 is: Due to solvents
Description for 692.72 is: Other: Photodermatitis

Lines 8-17 of our StackingThings example use dictionaries, but the initialization
was broken into several lines for clarity. This could be reduced to:

weights = {`llama':300, `spam':1, \
 `16 ton weight':32000, `dead parrot':2}
breakpt = {`llama':200, `spam':1000, \
 `16 ton weight':1000000, `dead parrot':15}

Finally, inheritance is provided in Python, although it is not demonstrated in
this example. The derived class may override methods of its base class or
classes (yes, multiple inheritance is supported in a limited form). In C++
parlance, all methods in a Python class are “virtual”.

Where Do We Go from Here?

Python is currently available in source or as a Linux binary from ftp.python.org.
Various modules have already been developed and become part of the
standard Python Library. To mention just a few: support for strings, regular
expressions, posix, sockets, threads, multimedia, cryptography, STDWIN,
Internet/WWW, Expect, and a large number of other contributions, are
submitted periodically.

Python is extensible. If you can program in C, you can add a new low-level
module to the interpreter. We are currently doing this at our company for a
distributed database system. The Python interpreter will be the high-level
command language for many of the applications.

In addition to Linux, Python runs on several other platforms: OS/2, Windows,
Macintosh, and many flavors of Unix. And like Linux, all of these versions are
freely available and distributable.

The documentation for Python is of a very high quality, written by Guido van
Rossum, the creator of Python. Four separate user manuals in postscript
format are available at the Python ftp site (see sidebar “Python Information”).
These documents have also been converted to HTML and Microsoft help file
formats. A Python FAQ, quick reference guide, and testimonials are also
available. O'Reilly and Associates also intends to publish Programming Python
early next year.

Python has its own active newsgroup (comp.lang.python) as well as a mailing
list which receives the same messages as the newsgroup. To subscribe to the
mailing list, send mail to python-list-request@cwi.nl. Various Python special
interest groups have been formed: Matrix-SIG, GUI-SIG, and Locator-SIG.

Finally, The Python Software Activity (“PSA”) has been established to foster the
common interests of the Python development community. The PSA, unlike the
GNU Project, does not do the actual development of software (although many
of its members probably do), but rather acts as a clearinghouse for Python
software modules developed by others. It also hosts workshops and related
activities to help promote the use of the Python language. Additional
information about the PSA may be obtained by visiting the Python home page:
www.python.org.

Special thanks to Mark Lutz, Aaron Watters, the PSA, and, of course, Guido van
Rossum.

https://secure2.linuxjournal.com/ljarchive/LJ/021/1121s1.html
mailto:python-list-request@cwi.nl
http://www.python.org

Jeff Bauer has spent the past 16 years developing health care software. His
current project involves interfacing pen-based computers with Unix systems to
track clinical information.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Using Linux and DOS Together

Marty Leisner

Issue #21, January 1996

Installing Linux on a machine for the first time is often a painful experience.
There are a number of useful programs and techniques for running Linux on
machines which run both DOS and Linux, some of which appeared in DOS 5.
Understanding and using these techniques makes it possible to use them
under DOSEMU whenever relevant.

When machines come from a factory with DOS pre-installed on them, the hard
disks are normally arranged so the whole disk is the C: drive. This is very
inflexible, even if you only want to run DOS, and unbearable if you also want to
run other operating systems. PC partition tables support the following
configurations (with a total of 4 allowed):

• One primary DOS partition
• One extended partition (containing a number of logical partitions)
• One or more non-DOS partitions (good for Linux)

Resizing Your Partitions

In order to run Linux, you typically have to repartition your disk, which is often
a good idea whatever operating system you run for the following reasons on
(DOS or UNIX):

• Flexibility
• Crash resistance Typically, disk problems are reserved to one logical disk

on the media. By having more than one logical disk on a physical device, if
anything goes haywire, it is reserved to one partition.

• Control You may not want to allocate your whole hard disk to any
application. Giving sets of applications a partition limits the amount of
disk space they can use. You may get “out of disk space” on partitions, but
not necessarily for the whole disk.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

When you want to repartition your disk, standard procedure used to be:

• Back up to floppies
• Erase your hard disk
• Repartition
• Recover your floppies

This may have worked with a few meg to back up, but now PCs normally come
with 200 Mb installed in a Microsoft Windows system, with little documentation
about what's important and what's not. There is a very clever utility called fips,
written by Arno Schaefer, schaefer@rbg.informatik.th-darmstadt.de. It is kept
on sunsite.unc.edu in /pub/Linux/system/Install/fips12.zip.

fips non-destructively shrinks your primary partition, leaving all your files in
place. You run defrag (an MS-DOS program) to pack all the files into contiguous
sectors and then fips to shrink your primary partition.

You can then reboot and create an extended DOS partition (with the DOS fdisk
program), and use Linux to create Linux partitions (with the Linux fdisk
program). fips is a wonderful tool that solves a very real problem. Please read
the instructions carefully before using it; any tool which writes your partition
table, like fdisk, should be used with caution.

N.B.: Be very careful using fdisk. Don't do anything destructive to your media
(i.e mkfs or format from DOS) until you are sure DOS and Linux agree on where
the partitions are. I've noticed very “unnice” features with the DOS fdisk
program—it read the free space as 100 Mb (which was correct), but when I
allowed it to make a partition with all the free space, it made a 350 Mb partition
(very naughty!)

Using Extended Partitions

Extended partitions are a way around the 4 partition limit on a physical disk. An
extended partition can serve as a container for more partitions, which can be
DOS, Linux (native or swap) or any other type. Remember, non-DOS partitions
need to be made in a non-DOS version of fdisk. Extended partitions are handy
for generating more than the 4 partitions normally found. I have never seen a
good discussion of adding swap space to a system—a good way is using
extended partitions.

Extended partitions are a good idea—for running DOS. Each logical partition in
the extended partition is given a letter by DOS (i.e. D:, E: , F:). Each of these
drives can then be formatted and used under DOS. I use an application called
join, which as of DOS 6 is no longer distributed with DOS, but you can still get a

copy via ftp from ftp.microsoft.com in /peropsys/msdos/public/supplmnt/. join
essentially allows you to “mount drives” so you have a single hierarchical tree
(like Linux).

For instance, I might configure a system with drive D: for personal stuff and E:
for djgpp, a port of the GNU C compiler to DOS. Then, in my root directory on
my C drive I create directories for \marty, \gnu, and in my autoexec.bat, I have:

join d: \marty
join e: \gnu

so that I don't have to deal with drive letters. I also join A: to \a, so my floppy
disks appears on the tree. But if you do something like this you'll break the DOS
format program and almost every DOS install/setup program for commercial
software. It seems that they can't deal with anything except A:.

Unfortunately, you can't use join with network drives. More on this later when
we talk about DOSEMU.

Using loadlin and config.sys

I found it effective to use loadlin, a DOS-based loader; this has the distinct
advantage of always booting a working system before running Linux. My
experience with LILO has been if you don't do it right, your system is only useful
as a paper weight. In my MS-DOS config.sys, I take advantage of the menus,
and the result is shown in Listing 1.

menuitem=dos
menuitem=simple.dos
menuitem=linux.1.2.8
menuitem=scandisk
menudefault=linux.1.2.8,5

[linux.1.2.8]
SHELL=C:\loadlin\loadlin.exe \loadlin\zimage.128 root=/dev/hdc2 -v ro

[simple.dos]

[dos]
DEVICE=C:\DOS\HIMEM.SYS
DEVICEHIGH=C:\MAGICS20\CDIFINIT.SYS /T:X
DEVICEHIGH=C:\MTM\MTMCDAI.SYS /D:MTMIDE01
DEVICEHIGH /L:2,12048 =C:\DOS\SETVER.EXE
DOS=HIGH
STACKS=9,256

[scandisk]
SHELL=c:\dos\scandisk.exe /all /checkonly

I boot Linux with a delay of 5 seconds, the advantage being that the system can
always boot DOS and will work in some capacity. I find this preferable to using
LILO and modifying the master boot record on your hard disk (if you do
anything wrong, you need to boot from floppy to recover).

One can easily select several kernels and/or configurations from the command
line. Using loadlin, you have to make a compressed kernel (make zImage), and
then put it on a DOS partition. I find this strategy effective even when installing
Linux the first time (instead of dealing with a boot and root floppy, the system
can boot the kernel with only a root floppy needed). You can easily add to the
menu to have several different kernels to boot from. Remember, you can use
the rdev utility to build defaults (like the root device) into the kernel.

In your autoexec.bat you can use the strategy:

goto %config%

:simple.dos
PATH=C:\marty\bin;C:\gnu\bin;C:\dos;C:\
goto end

:dos
SET SOUND16=C:\MAGICS20
C:\MAGICS20\SNDINIT /b
SET BLASTER=A220 I7 D1 T4
C:\DOS\SMARTDRV.EXE 512 512 /C
C:\DOS\IMOUSE.COM
PROMPT pg
SET PATH=c:\gnu\bin;C:\MARTY\BIN;C:\WINDOWS;C:\DOS;

SET TEMP=C:\DOS
JOIN d: \marty
JOIN f: \gnu
goto end

:end

The simple.dos setting is conceptually the same as booting Linux in single user
mode. I find it very useful for debugging a DOS system. If you want, you can
add config.sys menu entries to boot different kernels, boot Linux in single user
mode, boot Linux from floppies, etc.

The UMSDOS File System

In the standard Linux kernel configuration, the UMSDOS file system isn't
enabled. UMSDOS has a number of major advantages if you need file systems
to be shared between Linux and DOS. It retains full Unix semantics, so you
don't have to always be handicapped by DOS problems such as:

• lack of links
• restrictions of 8+3 file naming conventions
• restrictions of characters in file names
• one date (instead of access/change/modify time)
• lack of owner/groups

Using UMSDOS you can take advantage of a file system shared between DOS
and Linux, with the appearance of being a Linux file system when you run
Linux. If you want files to be portable between MS-DOS and Linux, restrict

yourself to DOS filenames (8+3 characters). Don't use links if you want the files
to appear under DOS. With a Linux file system, it's easy do things like create
“dot files”, do gzip-r on trees, and create links and backup files. Any file is
readable in MS-DOS; however, if you don't conform to the MS-DOS file naming
conventions, files are “munged” (that is, their names are squeezed to fit within
the 8+3 namespace). This munging is similar to what happens in mfs; those
who use PC-NFS are probably familiar with this.

When you start running the UMSDOS file systems, remember to run the
application called umssync, which creates consistency between the --linux-.---

files and the directory contents. You can have problems if you add or delete
files under DOS without Linux knowing about it. Call umssync from /etc/rc.d/
rc.local or /etc/rc.d/rc.M after the mount takes place, and this shouldn't be a
problem.

I've noticed a problem in UMSDOS files systems—the mount points are owned
by root, only writable by root, and the date is the beginning of the epoch. A
simple workaround is after mounting, do chown/chmod to the mount points as
appropriate (in your /etc/rc.d/rc.local file. Also, I find it useful to occasionally
run scandisk from DOS (notice the scandisk target in config.sys).

There is a performance penalty for DOS and UMSDOS file systems compared to
normal ext2. The penalty becomes severe if you have several hundred files in a
single directory (when you do an ls, get a cup of coffee). What I've noticed is
sequential I/O (with a tester called Bonnie) is marginally faster on ext2 than
UMSDOS.

But UMSDOS is ideal if you're doing work with DOSEMU. You put DOS files on
UMSDOS partitions, and you can easily access them from DOS, DOSEMU or
Linux. If they keep within the DOS file system bounds of 8+3 characters, they
look the same on both DOS and Linux. UMSDOS partitions provide a big
advantage when sharing files with DOS (much more so then the MSDOS file
system, since it treats Linux files as Linux files), but performance has to be
watched.

DOSEMU's View of File Systems

DOSEMU can access files in several different ways, which integrate with DOS
and Linux in different ways. The methods are:

image
A file which is arranged to look like a DOS hard disk. It is a “virtual” hard
disk stored in a file.

partition

Direct access to an MS-DOS partition. If the partition is also being used on
Linux, it should not be writable. Be aware that you can use mounted
partitions as DOSEMU file systems, which can destroy the file system. It is
safest if they are both used readonly; if you want to make them writable
you should only make one of them writable at a time. In addition, if the
DOS partition is writable from DOSEMU, multiple DOSEMU sessions can
cause the same kinds of filesystem destruction.

whole disk
Use the whole disk directly. Be vary careful with this. When used, it is
useful to set it [cw]readonly[ecw].

redirected access Access any Linux directory via a redirector. This is extremely
interesting—read on to learn more about this.

Typically, DOSEMU boots off a small image file (a specially constructed file
which appears to DOSEMU like a hard disk, with its own file system and master
boot record). Floppy disks are treated like conventional floppy disks. DOSEMU
can read them—and you need a bootable MSDOS floppy to start the process.
To start setting up the virtual hard disk as C: drive, you first boot off the
bootable MSDOS floppy, and then do:

A>fdisk /mbr
A>sys c:

Then you can boot off the virtual hard disk C:. This is covered more fully in the
DOSEMU documentation.

The image hard disk is often used just to get DOSEMU going. You can treat this
image as a large virtual hard disk, but the disadvantage is you can only access
this disk from DOSEMU. The other forms, which will be explained, can all be
accessed from Linux, and MS-DOS partitions can be accessed from raw MS-
DOS.

DOSEMU supports whole disk access (such as /dev/hdc) and partition access. I
have never used whole disk access and there doesn't appear to be a good
reason to do it. I have, however, used partition access. Those partitions cannot
be mounted by Linux at the same time, since DOSEMU manipulates the
physical partition, which will confuse the kernel, and potentially destroy the
partition. DOSEMU needs to have access to the physical partitions (you have to
make sure you have the permission to read and write).

The most interesting method I've found is the redirector. This allows you to
treat a Linux file system as a network drive. If you redirect the root of your
Linux file system, you can easily access all your linux files in DOSEMU. If you

have NFS mounts or an auto mounter running, you can even traverse to other
machines seamlessly. Note that everything it finds it must convert to an 8+3
MS-DOS namespace.

It works well if no munging is necessary. However, you may see this:

F:\dir a*

 Volume in drive F is s2/dist/X11
 Directory of F:\

ARCH 05-26-95 1:01a
ACM-4~YX GZ 971,391 06-02-95 11:02p
ARENA TAR 604,160 05-19-95 9:43p
ARENA~D0 GZ 530,468 05-22-95 8:35p

instead of

leisner@compudyne$ ls -d a*
acm-4.7.tar.gz arch/
arena-96.tar.gz arena.tar

Most of the time you can figure out what is meant. I've noticed some problems
identifying files which are spelled the same way except for the case of some
characters. On Unix they're distinct, but DOS has no notion of case in file
names (you will have a problem with makefile and Makefile, for instance).

Booting DOSEMU on Linux

You shouldn't do much on your virtual hard disk beyond booting. I found it
effective to have a directory ~/dos. My config.sys on the virtual hard disk looks
like this:

make sure we support ems
devicehigh=c:\ems.sys
the last drive is m, it can range up to z:
the default is f:
lastdrive=m
FILES=40
SWITCHES=/f
make a copy of c: drive on l:
install=c:\subst.exe l: c:\
this is the fun part
change the concept of c: drive
install=c:\lredir.exe c: LINUX\fs>{home}\dos

The last few lines are the most interesting. I'm making the virtual hard disk
accessible to dosemu through the L: drive. If you want to “lock down” the virtual
hard disk, you make the file readonly with the chmod command. Then,
continue booting from the user's ~/dos directory (where an autoexec.bat is
expected). This means that autoexec.bat is just a regular Linux file. You can edit
it with any Linux editor, but you have to remember to put \r at the end of each
line (that's a control-M character; in vi do

control-v-m,

in Emacs do control-q-m). In my autoexec.bat I have:

lredir f: linux\fs\${PWD}
lredir e: linux\fs\
set PATH=e:\dos\gnu\bin;e:\dos\c\dos;c:\;c:\bin
f:

The syntax ${...} allows environment variables to be substituted. PWD is the
current working directory. Bash doesn't normally export it for you; I explicitly
add

export PWD

to my .bashrc file.

I just map the F: drive to my current working directory. This is very convenient,
because when I'm working with DOS files on Linux, I can start up DOSEMU
wherever I am at the moment.

I map my entire filesystem to E:. This makes almost any file accessible under
Linux also accessible under DOSEMU. This includes NFS files.

Some programs have a problem with a redirector, since it acts as a network
drive. For these programs, you need to use either partition access, image
access or a ram disk.

Booting from the Installed DOS System and Win95

Extending the above scenario further, we can actually boot from a DOS hard
disk using

disk { wholedisk "/dev/hda" readonly }

This has a number of advantages—primarily the virtual hard disk does not have
to be created and maintained (note the virtual hard disk is only readable within
DOSEMU, making maintenance cumbersome). DOSEMU allows you to select
the extension for the system files (config.sys and autoexec.bat) either in the
configuration file (using EmuSys or EmuBat) or from the environment (using
AUTOEXEC and CONFIG). This boot disk isn't writable, so switch to a writable C:
drive with lredir.

I typically have a config.sys file for DOSEMU called config.emu. In it I just change
the C: drive (from the virtual hard disk) to a ~/dos directory, and have an
autoexec.bat file there. I also have links to commonly used DOS programs (i.e.
command.com).

Win95 throws some curves into this scheme. I've been using Win95 since the
official release and am favorably impressed with it (anything could improve on
Windows 3.1 problems). Win95 uses the file MSDOS.SYS to control the boot
process as another ASCII configuration file. In order to activate a config.sys
menu to either boot DOS or Linux, the following works in MSDOS.SYS:

[Options]
Logo=0
BootMulti=1
BootGUI=0
BootDelay=0

In this case, after you run Linux, booting DOSEMU will allow you to run DOS
Version 7.

You can also run an older DOS (if this was an upgrade) if you press F4 when it
starts booting. But in this case, if you boot Linux and then start up DOSEMU off
the DOS hard disk, the boot loader gets hopelessly confused, since it shuffles
files like msdos.sys, config.sys, and autoexec.bat between Win95 and an older
DOS system, putting the appropriate file in the appropriate place for the
appropriate DOS (Win95 config files end in .w40, and older DOS files end in
.dos). Obviously, you aren't expected to run DOSEMU under Linux!

Conclusions

I use DOS occasionally, but do a lot of work in MS-DOS since I'm working on
DOSEMU and an alpha djgpp. I have found that you can do very flexible things
with your partitions through extended partitions, and that Linux treats DOS
filesystems quite nicely (especially UMSDOS).

I've found cross-development of MS-DOS applications to be ideal for DOS
software development, you can write portable software and try it on Linux—
then use Linux compilers to generate .EXE djgpp files and run the djgpp
binaries in DOSEMU.

Marty Leisner (leisner@sdsp.mc.xerox.com) is a professional programmer for
Xerox Corporation who was first exposed to Unix on a PDP 11 running V7.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:leisner@sdsp.mc.xerox.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

CVS: Version Control Beyond RCS

Tom Morse

Issue #21, January 1996

If you have tried version control, but are frustrated by the need to set explicit
locks every time you want to edit a file, or perhaps dislike being unable to edit a
file when other developers have already locked a file, CVS is for you.

CVS (Concurrent Versions System) is a version control system. With CVS,
developers are able to review the change history of any source file, retrieve any
revision of a particular file, avoid overwriting one another's changes, and keep
track of releases and the file revisions that go along with them.

First, a short introduction to some of the concepts of CVS. All the sources for a
project are stored in a central location called the repository. The sources in the
repository are organized into modules. Typically each module represents a
separate project. A module can represent any number of files and directories.

When a developer wishes to work with a particular set of sources he uses CVS
to retrieve a local copy of them. This local copy can represent the most recent
revision of each file or some past revision.

Typical version control systems require a user to “lock” each file he wishes to
edit, preventing other developers from editing these files until the first user has
committed his changes. This can be quite time consuming as developers either
wait for one another to commit changes, or work simultaneously and manually
merge the changes together later on. CVS solves this problem by allowing
concurrent editing.

Concurrent editing allows two or more developers to work concurrently on the
same files. Ordinarily, concurrent editing leads to one developer overwriting
another's previously committed changes.

CVS prevents overwrites by forcing a developer to merge into his local copy any
changes that have been committed to a file in the repository since he retrieved

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

his local copy of that file. Only then can the developer commit his changes. The
process is mostly automatic, but if, for instance, changes have been made to
the same line of code in both the repository and the local copy, manual
resolution of the conflict is necessary.

A day in the Life of...,

Let's look in on our software development team in action. Due to the
confidentiality of their project, all the file names have been changed to protect
the innocent. Their project is to “build a better mouse trap.”

Fixing Bugs

Fezzik, though primarily a documentation writer, (This explains why all our
team's manuals are in rhyme.) does some detecting and squashing of software
bugs in the course of his work. Let's watch as Fezzik fixes a critical bug in a
previous release of the product.

Version 4.0 of the product was released a few months ago. Now a critical bug
has been found by a very important customer. The bug must be fixed in the
released version of the software, a point release made for the customer, and
the fix must be merged into the working version of the software.

In investigating the problem, Fezzik has determined that the bug was
introduced between the 3.3 and 4.0 versions of the software. His first step is to
get a copy of the 4.0 sources. He does this with the command:

cvs checkout -r PROD_REL4-0 mousetrap

This will check out all of the directories and source code files for the entire
project. The version of each source file will be the version that was included in
the release with the name PROD_REL4-0, exclusive of any changes that have
been to that source file since the release.

Now Fezzik has a new directory called mousetrap. In this directory are all the
project sources as they were when the release 4.0 was made. Because
development on the project has continued since release 4.0, Fezzik must start a
new branch on the revision tree from this point. He uses the following
commands:

cvs tag -b POINT_RELS_REL4-0
cvs update -r POINT_RELS_REL4-0

The revision tree will look like this:

 |HEAD - dev for next full release

POINT_RELS_REL4-0\ |
 \ |
 \|
 +PROD_REL4-0
 |
 |
 |
 +PROD_REL3-3
 |
 |

Fezzik could have created the branch tag before checking out the project,
eliminating one step from the method he used. The following sequence would
produce the same effect as above:

cvs rtag -b -r PROD_REL4-0 POINT_RELS_REL4-0 mousetrap
cvs checkout -r POINT_RELS_REL4-0

CVS has many command and option combinations. Therefore, there is often
more than one way to produce the same or similar results. This flexibility allows
CVS to be adapted to a wide range of development processes.

Fezzik suspects that the file cheese.c contains the bug, so he decides to view all
the changes made to that file between releases 3.3 and 4.0. To do this he uses
the diff command:

cvs diff -r PROD_REL3-3 cheese.c

This produces a listing of the differences between the file cheese.c in our
current directory and the revision used in PROD_REL3-3. Fezzik could have
specified a second revision with a

-r PROD_REL4-0

and had the same effect.

In reviewing the differences, Fezzik finds what he believes to be the bug he is
looking for. He would like to clear any modifications he plans with the person
who made the change, so he looks at the log file for cheese.c.

cvs log cheese.c

He sees that only Buttercup modified this file between the two releases, so he
is able to talk to her about the fix. After making the fix and testing it, Fezzik is
ready to commit his changes. He issues the following command from the top
directory of the project:

cvs commit -m "Fixed bug #1202"

Fezzik did not specify a specific file to commit, so this command will commit all
modified files in this directory and, recursively, in all of its subdirectories. Each
file committed will have the message “Fixed bug #1202” added as a log
message. Since this fix will be sent to a customer, Fezzik decides to tag the set
of files that will be sent:

cvs tag PROD_REL4-0-1

Now Fezzik needs to create the patch file to be sent to the customer:

cvs rdiff -r PROD_REL4-0 -r PROD_REL4-0-1 mousetrap > patch4.0-4.0.1

This creates a Larry Wall format patch file which the customer can feed into the
patch program to update his sources. The patches will update the customer's
4.0 sources to the new 4.0.1 sources.

Now Fezzik needs to merge the fix into the current development sources. First
he updates his sources to the latest revisions on the main thread by using this
command:

cvs update -A

This has the same effect as deleting the local copy of the module, and doing a
new checkout of the module, thereby getting the latest revisions.

Then he has CVS automatically merge in the changes from the 4.0.1 point
release with:

cvs update -j PROD_REL4-0-1

CVS will automatically merge the changes Fezzik made on the branch into these
latest sources. If the merging of the two sets of sources causes conflicts, CVS
will announce this. At the conflict points in the file, there will be delimited
regions containing the text from both sources. These regions will need to be
merged manually.

Once everything is merged, Fezzik can commit all of the changes using another
commit command:

cvs commit -m "Merged in fixes in PROD_REL4-0-1"

Contention

Now we turn to Westley, who will demonstrate how CVS is used when working
on a multiple-person project.

Westley has been off the project for a month [not too surprising, what with his
having been dead and all]. The first thing he needs to do is bring his sources up
to date.

cvs update

Since he has not modified anything since his last commit everything simply
updates; no conflicts could exist. Now Westley would like to see what has
happened since his departure on April 10. He uses the following command to
view all the log messages for the commits that were made after April 10th:

cvs log -d>4/10 -b

After reviewing the log file he feels caught up, so he jumps right into modifying
sources. During the course of his work he needs to create a new file,
happiness.c. After he creates the file happiness.c on the disk, he issues the
following command:

cvs add happiness.c

Westley also obsoletes a file, and after deleting the file, he issues the following
command:

cvs delete agony.c

Both the add and delete commands will not take full effect until the CVS
commit is done.

After a day of work, Westley has added a new feature and is ready to commit
his modifications. He issues the following command:

cvs commit -m "Made a number of wonderful improvements"

CVS informs him that someone else has already committed changes to some of
the files that he has made changes to, so he must update his files with the
other developer's changes before committing his own. A simple call to the
update command will do this:

cvs update

After manually editing to resolve any conflicts between his changes and the
changes already made to the repository, Westley tests his new feature again.
Everything looks okay, so he attempts his commit again:

cvs commit -m "Made a number of wonderful improvements"

This time it works. This method of working is quite an improvement over many
systems where a person must first lock a file before it can be edited, and
anyone else wanting to edit the file must wait until the first person has
committed changes and unlocked the file.

Releases

Now Buttercup will demonstrate how to release a new version of the software.
She begins by checking out the latest sources.

cvs checkout mousetrap

After verifying that these sources are the exact versions that should be
released, she tags the release:

cvs tag PROD_REL4-1

Then she creates a set of directories containing all of the sources to be
delivered by using the export command:

cvs export -R PROD_REL4-1 mousetrap

This will create a directory structure filled with only the correct sources and
none of the CVS administration directories or files.

Summary

The full power of CVS exceeds the scope of this article, but I hope I have
provided enough of a taste to entice you to try CVS. We have been using it for 5
months at Lernout & Hauspie, and are more than pleased with its performance.

Per Cederqvist has written an excellent introduction to CVS called Version
Management with CVS. It can be found on the WWW by following links on the
CVS page at http://www.winternet.com/~zoo/cvs/. This manual will be included
with the next version of CVS, version 1.4.

For prior adventures of this software development team, see (or read) William
Goldman's The Princess Bride.

Tom Morse (tmorse@lhs.com) has been working in Unix for the past 10 years
and is currently employed at Lernout & Hauspie Speech Products. When he is
not chained to a computer, he spends his time mountain biking, hiking, and
attempting to learn Dutch.

Archive Index Issue Table of Contents

http://www.winternet.com/~zoo/cvs
mailto:tmorse@lhs.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The Quintessential Linux Benchmark

Wim van Dorst

Issue #21, January 1996

When Linux boots, it displays a “BogoMips” number. What does that mean? Is
the number displayed correct? What use is the infromation? This quintessential
part of Linux is demystified in this article.

Some device drivers in the Linux kernel need timing delays. Either they need a
very short delay, or the delay must be very accurately determined. A simple
non-busy loop cannot do this. Therefore, Linus Torvalds added a calibration in
the boot procedure to predetermine how often a specific busy-loop algorithm
can be calculated in one second. This predetermined value, called
loops_per_second, is used in the device drivers to delay for precisely measured
times.

For fun, Linus also added a print statement presenting this predetermined
value (divided by 500,000) as BogoMips. Linus apparently loves it when millions
of Linux users are gazing at their computer, baffled by these bogus MIPS. Note
that BogoMips have nothing to do with the million instructions per second that
the name suggests; that is why they are bogus.

The only serious reason for paying attention to the BogoMips presented on
booting Linux is to see whether it is in the proper range for the particular
processor, its clock frequency, and the potentially present cache. 486 systems
are especially prone to faulty setups of RAM caching, turbo-buttons, and such
things.

Which Value to Expect

People continuously ask on Usenet: “I have an XYZ CPU running at clock MHz.
How many BogoMips should it do?” The answer can be calculated from the
following table:

Intel/AMD 386SX clock * 0.14 (± 0.01)
Intel/AMD 386DX clock * 0.18 (± 0.01)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

Cyrix/IBM 486 clock * 0.33 (± 0.04)
Intel/AMD 486 clock * 0.50 (± 0.01)
Pentium clock * 0.40 (± 0.01)
680x0 (insufficient data)
PowerPC clock * 0.77 (± 0.02)
Mips (insufficient data)
Alpha clock * 0.99 (± 0.01)

From the above calculation we see several important points. First of all, the
Intel and AMD 486 CPUs are not showing the same BogoMips as Cyrix and IBM
486 CPUs. This does not mean that they have a different perceived
performance; it just means that they process the busy-loop algorithm
differently.

The table also shows that the Pentium processor doesn't have the expected
extrapolated multiplication factor. This is due to the fact that the specific busy-
loop algorithm is not optimized for the parallelism of the Pentium processor.

The BogoMips calculations for the Motorola, PowerPC, Mips, and Alpha
processors are similar to the Intel type processors calculations. Because the
non-busy loop algorithm is coded in Assembler, however, they cannot be
identical. It clearly shows that comparison of BogoMips between CPUs is really
bogus, even between two different Intel type CPUs.

Last but not least, you see an allowed variation in the multiplication factor of
about 0.01. The BogoMips calculation loop is “quantizised” (Linus's term), so it is
likely that you will get exactly the same number all the time. Yet, if the speed is
just on the edge, small variations, such as different lengths for interrupts, will
cause your machine's BogoMips to vary.

The Most Frequently Asked Question

“When I boot Linux I get the message:

Calibrating delay loop.. ok - 23.96 BogoMips
failed

Where or why has the calibration delay loop failed?”

The obvious answer is that it didn't fail. If it had failed the text would have been:

Calibrating delay loop.. failed

What likely did fail was a driver for some gadget which may not be in the
machine. The point is that just after calculating the BogoMips, all device drivers
are initialized: first the SCSI devices, then Net devices, etc. Any failure in these
initializations is duly reported. The AHA152x drive is noted for such failures.
Other effects of failing drivers (and not of failing BogoMips calculations) are
systems crashes, long waits, and complete system lock-ups.

Since Linux 1.2, many error messages have improved, so upgrade to at least
that version to find out which particular driver is failing.

Standalone BogoMips Program

For people without Linux systems, or for those people who do not want to
reboot their system time and again, a stand-alone program for calculating
BogoMips is available in the standard archives (e.g., on sunsite.unc.edu in /pub/
Linux/system/Status/bogo-1.2.tar.gz). On Linux, by default, it runs the same
code that is used in the Linux kernel while booting, but runs as a user program.
Note that due to system load, values calculated with the stand-alone program
may be lower than expected for the CPU you are running, and lower than
reported during boot. For the non-Linux systems, a portable C version is
available that may run on any system that supports an ANSI C compiler and
library.

Complete Reference Table: BogoMips Mini-HOWTO

The BogoMips mini-HOWTO gives a full table of reported BogoMips for various
systems. More than 250 BogoMips references as reported on Usenet, or sent
directly by e-mail to the maintainer, are listed with information about CPU type,
clock speed, BogoMips, and the name and e-mail address of the reporter. For
example, the lowest and highest BogoMips reported in the current version of
The BogoMips Mini-HOWTO are:

The Lowest: H. Peter Anwin pa@nwu.edu 386SX/16 387 nocache 0.57 BogoMips
The Highest: David Mosberger-Tang davidm@cs.arizona.edu Alpha 21064A/275
273.37 BogoMips

In the BogoMips mini-HOWTO, values that do and do not comply with the
aforementioned BogoMips calculation methods are listed. The non-complying
group is named “Oddly or Faultily configured” because non-compliance does
not necessarily mean that the system is faultily configured.

Benchmarking

The BogoMips may be used to see whether your system is faster than mine. Of
course this is completely wrong, unreliable, ill-founded, and utterly useless, but
all benchmarks suffer from this problem, so why not use it? This inherent
stupidity has never before stopped people from using benchmarks, has it?
[Note for the humor-challenged: no angry letters to the editor will be accepted
on this point. —Ed]

Wim Dorst (Dorst) Isolde van Dorst is the beautiful daughter of the author. She
is just over one year old, and is now playing around in the garden, walking over

mailto:Dorst

that still unfamiliar, ticklish stuff: grass. She can be reached by e-mail at
isolde@clifton.hobby.nl

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:isolde@clifton.hobby.nl
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

WEBsmith

Phil Hughes

Issue #21, January 1996

Many people (including myself) have found answers to Web-related questions
in those and other issues of LJ.

In Linux Journal's 21-issue history we have already had two issues that focused
on the World Wide Web. Many people (including myself) have found answers to
Web-related questions in those and other issues of LJ.

Early in 1995, SSC, the company that publishes Linux Journal, decided to
establish a Web site. We decided, of course, to base it on a Linux system. We
cautiously promoted it while waiting for some problems to appear. We watched
page hits grow from less than 10,000 per day to over 35,000 per day.
Performance continues to be excellent as we happily provide articles from back
issues of LJ, links to advertisers, SSC's own product catalog and more. (If you
have Web access and haven't taken a look. you should. The URL is
www.ssc.com)

Back in June, I was reading one of the Web-related articles in LJ and realized
that the growing hoards of Web developers needed the same sort of concise
technical information that Linux Journal is offering the Linux community. After
talking to Belinda Frazier, Associate Publisher of Linux Journal, about the idea
and seeing that we were in agreement, we started doing some research. Our
conclusion was that while there were lots of Web and Internet magazines, most
primarily addressed the “consumer”, i.e., the Web Surfer.

With virtually exponential growth in the Web community and substantial drops
in the cost of providing a Web presence it was clear that the development end
needed to be addressed. And the amazing speed at which changes are
appearing dictated that a magazine was a better approach than a book or
series of books.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
http://www.ssc.com

At this point, Belinda paid the price of agreeing with me. She got saddled with
the job of Publisher of the new magazine. My contribution consisted of sparing
her the same mistakes we made starting Linux Journal. Happily, I can say that
we fewer mistakes have been made in this effort than with LJ. After we start 50
or more magazines we may have it all down pat.

One of the best decisions we made was to introduce WEBsmith as a
supplement to Linux Journal. After all, the idea came from articles in LJ, much of
the Linux community has been involved in the Internet, and the Web and Linux
make a first-class Web server.

A recent survey showed that 9% of all Web servers are Linux-based. That makes
it th second most popular Unix-like platform (behind Sun). While WEBsmith is
not intended to be another Linux magazine, my personal hope is that we can
show the growing Web community that we have a pretty handy operating
system here for doing Web work. If you are interested in the Web—either as a
developer or a manager who needs to build a Web presence for your company
—I encourage you to subscribe to WEBsmith. Expect the same high-quality
technical articles you have come to expect in Linux Journal, addressing your
concerns and answering your questions.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Letters to the Editor

Various

Issue #21, January 1996

Readers sound off.

Did you folks get my e-mail from out Humanitarian Support Operations
Conference? The Center for Excellence in Disaster Management and
Humanitarian Assistance's Humanitarian Support Operations Conference was
held recently at the Ilikai Hotel in Waikiki. The event drew over 170 people from
23 Asian-Pacific countries including Thailand, China, South Korea, New Zealand,
Papua New Guinea, Fiji, Mongolia, Australia, the Philippines, Indonesia and
many others.

Supporting the conference was a pair of Linux machines providing Internet
access (WWW and Mail) running NCSA's Mosaic and the COE's Conference
Home page. Attendee photos were digitized and put online using an Apple
QuickTake camera. Events included a working session and introduction to
Linux, which was a first experience for many of these countries.

Future COE plans include travelling to these countries with Linux laptops, as
we've chosen to use the OS as our Internet connectivity platform used with
developing nations. In short, choosing Linux gives us a cost-free method of
connecting dozens of dissimilar host sites with a similar operating environment.
We'll begin building custom database applications, namely a front end for our
Oracle SQL server (Sparc 20 based) for Linux by the first week of October.

We're very excited about Linux, and everyone at the conference was equally
enthusiastic about seeing the “Linux Work-Servers” and the power they give to
otherwise blah-entrenched x86s. One of the delegates from India asked me if
his 486-100 would be suited for such a project...I had to laugh when I told him
that the machine he was using was a 486-33! (We had 20 inch monitors on the
desk and the boxes underneath...so it looked like we had some real
powerstations going!)

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

If you'd like additional information about what our future plans for Linux hold,
please don't hesitate to ask.

Rob!

LJ Founds a University (Not!)

In case you hadn't gotten this, I enclose the following reply sent to Keith Briggs.
In his letter, Mr. Briggs called to my attention my apparent invention of a
university:

Dear Mr Wilder:

I quote from Linux Journal #17, page 22: “...comes from the Australian Technical
University in Melbourne,...” I am sorry to have to inform you that there is no
such place in Melbourne. There is not even a place with a similar name! (The
Australian National University comes closest, but it is in Canberra).

Keith Briggs

Dear Keith Briggs,

I don't know how I came up with the “Australian Technical University in
Melbourne”; every reference I can locate in the materials I prepared the review
from points to the University of Technology, Sydney. My apologies to all.

Dan Wilder dan@gasboy.com

Perl Errata Sheet

I read your review of my book (Teach Yourself Perl in 21 Days, reviewed by
David Flood on page 15 —ED) in the November 1995 Linux Journal. In the
review, David noted that he was unable to get an errata sheet from
CompuServe. In case you have not yet managed to pick up an errata list
anywhere, I have taken the liberty of enclosing one. This contains every error I
know of.

Thank you for taking the time to review my book. If you know of anyone else
who wants an errata sheet, let me know and I will pass this on to them.

I am glad that you have found my book useful, and of course encourage you to
tell everyone you know to buy it.

Thanks,

mailto:dan@gasboy.com

—Dave Tillauthor of Teach Yourself Perl in 21 Days davet@klg.com

LJ Responds:

The entire errata sheet may be found at the LJ Home Page on the WWW. Just
browse the contents for Issue #19, November 1995, and click on the title of
David Flood's review of Till's book to see the complete list.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:davet@klg.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

From the Editor

Michael K. Johnson

Issue #21, January 1996

In a rare opinion column, our editor turns Socrates and asks: “What is success?”

As Linux approaches the fifth anniversary of its conception (in June), it is
perhaps worthwhile to ask if it has been a success so far. It has certainly been
far more successful than anyone originally thought it could be, as support for
new hardware has increased tremendously and users all over the world
number at least in the hundreds of thousands, and more likely in the millions.
Is that success?

For those of us who use it every day to take care of all of our computing needs,
Linux is a success regardless of the numbers of people and organizations who
use it. Without even a magazine for its users, it would be a success. Without
commercial applications, it would still be a success. Linux has nothing to prove.

But that doesn't mean that there is nothing to improve.

Linux is a success with technical people, and has been for a long time. Linux
comes with a huge, well-understood tool box of programs for data
manipulation and services. And for basic, well-understood services, the Linux
distributions provide (more or less) out-of-the-box solutions. FTP services,
WWW services, NFS file services, LPD print services, SMB/Lan Manager file and
print services, and more all work out-of-the-box, or with a little configuration. In
part because of this, Linux is seeing growing personal, corporate, educational,
and governmental use.

So what's missing? Fairly obviously, as Linus Torvalds himself points out, a wide
choice of desktop applications. But that's being worked on (native applications,
Wine, DOSEMU, Executor) and nothing I could say would speed up any of those
projects. Instead, I'd like to present one particular challenge for growth: the
market for pre-configured (“works out-of-the-box”) software that fills the needs
of particular niche markets. If this challenge isn't met, Linux will still be a

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

success; Linux use won't shrink. This is just an area in which Linux has the
potential to be very useful, but where important pieces are still missing.

I'll use the example of Point Of Sale (POS) systems, since I know a little bit about
them. It is very definitely possible for a technically competent person to use a
Linux system to create a POS system. The goal is essentially to piece together a
database with a terminal or network of terminals in order to quickly look up the
prices of individual items and compute the total cost of a sale, as well as
manage inventory and do financial transactions.

The standard Linux techie (call him Jon Hacker) answer runs something like this:
“Oh, that's easy. Just build a database (flat text, DBM, Postgres 95, or one of the
commercial databases for Linux) and write a program (Tcl/Tk for X, curses for
text terminals) for a user interface. I could do that in a week. Then add things
like credit card validation on-line, inventory control, etc. That could take, um, a
while longer.”

Jo Store Owner doesn't have a week. She isn't a guru, and she doesn't have a
guru to write the system for her, either. And she's not going to hire Jon Hacker
to write a POS system based on Linux, since she can buy a system that does
meet her needs—though perhaps not as well as a customized system—which
runs on DOS or Windows or Mac, and it will cost her less to get it up and
running. It may not be as well customized for her business, and it may not even
be flexible enough to customize, but it will work well enough for her, and to
instead hire Jon Hacker would invoke the law of diminishing returns—it simply
wouldn't be profitable.

However, if a POS package (free or commercial; it doesn't much matter) were
available for Linux, and came configured intelligently, but used Linux tools to
do the job and was therefore easily customized, it would be an attractive
option. Joe might even hire Jon to customize it for him.

My point isn't really POS systems; there is already at least one complete POS
system based on Linux. However, there are lots of niches like this that Linux is a
great technology base for, but which don't have off-the-shelf solutions based
on Linux yet, even though more free and commercial tools are available all the
time. (Read comp.os.linux.announce and LJ's own New Products if you need
convincing.) Being able to start doing something after running a simple
installation (like a:setup under DOS and Windows) is the basis of meeting this
challenge.

As I see it, this challenge is being met to some degree, but sporadically and
piecemeal. My goal is merely to help popularize the idea of making Linux a
useful business solution, and encourage Jon Hacker to search for and support

niches in a way that Jo Store Owner can understand and trust. I'm not
suggesting this to help Linux take over the world, but rather because I think
that the technology available for Linux has lots of price/benefit potential for Jo
and employment benefit for Jon, and because I think that the price pressure
that Linux's low cost can provide will invigorate niche markets.

Perspective

There was a time when Linux existed, but there was no such thing as a
distribution. You had to put a Linux system together from scratch—a few floppy
images, including kermit for file transfer, or tar to pull more files off floppies, or
maybe mtools to read DOS-format floppies. Individual binaries were available
from tsx-11.mit.edu and ftp.funet.fi. Distributions weren't necessary; it really
was possible to build your own. I've done it several times. I would even consider
doing it again—for fun. But when I want it done right, I get one of the Linux
distributions and install it in a matter of minutes, or at most hours, most of
which is consumed by the computer quietly pulling files off a CD-ROM without
my assistance.

What I'm suggesting is very much like these distributions: the basic problem
already solved, ready for site-based customization, provided in a convenient
format. If you think that is a simplistic view of the need, remember that
Slackware was created by one person who customized and bug-fixed SLS for
his friends and college professors. Although it evolved from there, and doesn't
meet everyone's Linux needs, Slackware was useful from the start.

Many of the advertisements in Linux Journal are for CD-ROMs with new
versions of Linux and Linux tools. That is important; an easily-available supply
of new tools has helped Linux spread even faster than it could over the Internet
alone. However, based on my belief that Linux is growing and evolving, I
suggest that in five more years, we will see more and more advertisements
touting Linux-based products intended to solve a business problem, rather
than impress geeks like me.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

System Administation: Maximizing System Security, Part 1

Æleen Frisch

Issue #21, January 1996

A lot of UNIX security is based on passwords, and in this first part of a two-part
article, Æleen helps explain many of thei issues involved in setting up and
maintaining passwords on Linux systems. Next month's installment will cover
other system security issues.

One of the most hackneyed cliches in all of UNIX culture is that UNIX security is
a contradiction in terms. While things aren't quite as hopeless as this cynical
view, it is important to realize that a secure system is something you create, not
something you get automatically when you install any current Linux distribution
(or any other UNIX operating system for that matter).

This article provides an overview of UNIX security issues, and discusses the
resources and tools available to Linux system administrators or anyone
responsible for administering a Linux system—which are not necessarily
synonymous. It considers what the most important issues are and what exists
to defend the system. And since many of the most egregious “UNIX” security
problems are actually vulnerabilities in TCP/IP networking and its component
protocols, we naturally consider network security issues, as well as those
relevant to an isolated computer system.

What is Security?

General discussions of computer security traditionally focus on the types of
losses that can result from inadequate security measures:

• Loss of equipment. The first or last threat to any computer system
(depending on your point of view) is the loss of the computer itself. This
can result from a variety of causes: theft, fire, water, earthquakes and
other natural disasters, vandalism, and accidents (e.g., a user spilling
coffee on it).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

• Loss of data. This type of loss can also occur in a variety of ways: data
could be obtained by someone who should not have it (for example, a
competitor), files could be accidentally or deliberately damaged or
destroyed, or information that should have remained private could
become publically accessible or broadcast.

• Loss of use. A third type of loss can occur when neither the equipment
nor its data is damaged, destroyed or removed, but the system is
nevertheless unable to perform some or all of its normal functions. For
example, an extended power outage could cause such a loss of use; the
1988 Internet worm incident is an example of software rendering a
computer unusable.

Depending on your situation, some of these threats are obviously more
potentially hazardous to you than others.

Effective thinking about security begins by considering potential losses rather
than potential threats, because doing so allows you to place the threats in the
context of your system and thereby make appropriate choices about how to
prevent and address them. For example, every system has the potential of
being broken into by an unauthorized person. However, the specific nature of
that threat changes depending on the sort of loss that would be its most
serious consequence—as do the corresponding measures to prevent the loss.

A successful intruder always has the potential to alter or destroy any file on the
system, so every system needs to guard against and have a plan for recovering
from that eventuality. In addition, for a system containing sensitive or
proprietary data (customer credit card numbers, source codes for software
products under development, and so on) one might need to consider ways of
securing such data even from the root account. On the other hand, if loss of
use is the primary loss against which a system needs to be protected, then
devising ways of quickly identifying and neutralizing such an attack is much
more important than providing extra security for any of the data on the system.

As these scenarios suggest, security involves more than just prevention against
attacks. Equally important components of computer security are the recovery
plans which specify what to do when something goes wrong. Computer security
is not something you think about once in a while, but rather something that is
an integral part of your thinking and actions in every administrative activity you
perform. It includes the following concerns (not all of which will necessarily
apply to any specific system):

• Physical system access
• Theft prevention—locks and so on
• Prevention of physical and electronic vandalism

• Ensuring continuous power via an uninterruptible power supply (UPS) unit
• Fire control systems, surge suppressors, and other devices to prevent

damage from the external environment
• User authentication: passwords and other mechanisms
• Modem access (dialin and dialout)
• File ownership and protection
• Encryption of very sensitive or private data
• Network access policies and network software configuration
• NFS configuration
• Procedures and policies related to building, testing, installing and using

public domain software
• Backup procedures
• Secure storage of backup media (including offsite copies)
• Storage of original operating system media
• Disaster recovery plans
• User training for good security practices

A thorough discussion of all of these topics would consume several entire
issues of Linux Journal, so we focus on operating system-level protections and
solutions useful for Linux systems, in terms of both “standard” features and
useful additional packages. Security facilities offered by the various Linux
distributions vary considerably, but no current distribution includes everything
that a prudent system administrator would want to have and use.

Security Resources

Package ftp Location
COPS ftp.cert.org:/pub/tools/cops
Courtney ftp.best.com:/pub/lat
Crack ftp.cert.org:/pub/tools/crack
Gabriel ftp.best.com:/pub/lat
Merlin ciac.llnl.gov:/pub/ciac/sectools/unix/merlin
Netscape ftp.netscape.com:/netscape/unix
npasswd ee.utah.edu:/admin/passwd/npasswd
passwd+ ee.utah.edu:/admin/passwd/passwd+
Perl prep.ai.mit.edu:/pub/gnu
Satan ftp.win.tue.nl:/pub/security
shadow sunsite.unc.edu:/pub/Linux/system/Admin
sudo sunsite.unc.edu:/pub/Linux/system/Admin
swatch sierra.stanford.edu:/pub/sources
TCP Wrappers ftp.win.tue.nl:/pub/security/tcp_wrapper
Tripwire coast.cs.purdue.edu:/pub/COAST/Tripwire

Passwords and User Authentication

Passwords are the primary way of securing user accounts on Linux systems.
However, the protection offered by passwords is only as good as the passwords
themselves. If a hacker decides to attack the accounts on your system, bad
passwords are almost as bad as no passwords at all.

There are several things you can do to ensure that the password facility is
providing the best protection it is capable of:

• Make sure all active accounts have passwords and that system accounts
not intended for user logins (e.g. bin) are disabled (do this by placing an
asterisk in the password field for that account).

• Secure the encoded versions of the system's passwords by using a
shadow password file.

• Educate users about keeping passwords secret, selecting hard-to-crack
passwords, changing passwords as necessary, using different passwords
at different sites, and similar security practices. Institute password aging
and/or new password obscurity checking if appropriate.

The first item is self-explanatory; we look at the others in detail.

Shadow Password Files

Shadow password files are designed to correct the security hole resulting from
the normal password file being world-readable. Everyone needs to be able to
view the contents of /etc/passwd so that things like file ownership displays
properly (UIDs are translated into usernames). However, since the file is
readable, anyone can make a copy of it. This means someone with legitimate or
illegitimate access to an ordinary user account can copy it and attempt to crack
the passwords of more powerful accounts at his leisure.

A shadow password file facility removes the encoded passwords from the
normal password file and places them in another file, conventionally /etc/
shadow, which can be read only by root. The shadow package provides shadow
password file capabilities for a variety of UNIX systems including Linux. It is
included in some Linux distributions by default. It includes replacements for the
login, passwd, and su commands as well as many utilities for creating and
manipulating the shadow password file and account entries within it.

Building the shadow package is quite straightforward. If you've retrieved a
version that has been ported to Linux, you'll generally only have to modify the
config.h file. I recommend the following settings (culled from various points
within that file):

/* Use shadow password file. */
#define SHADOWPWD
/* Use up to 16 char. passwords. */
#define DOUBLESIZE
/* Enable password aging checks. */
#define AGING
/* Log events to syslog facility. */
#define USE_SYSLOG
/* Support for remote logins. */
#define RLOGIN
#define UT_HOST

/* Data file for most recent login time records */
#define LASTFILE "/var/adm/lastlog"

Once the package is built and installed, the pwconv command may be used to
create an initial /etc/shadow file. It creates the files /etc/npasswd and /etc/
nshadow. The former is an altered version of the original password file in which
the password field in each entry has been replaced by an x; the latter is the
corresponding shadow password file. In order to activate them, you must
rename them by hand:

cd /etc
mv passwd passwd.prev
cp npasswd passwd
cp nshadow shadow

Password Aging

Users don't like to change their passwords, and left to their own devices they
will literally never do so. The shadow package includes an optional password
aging facility which enables a system administrator to specify how often users
must change their passwords. Whether using these features is necessary or not
depends on the needs of your site.

Entries in /etc/shadow have the following format:

username:password:change_date:min_change:\
max_change:warn:inactive:expire:

where the first two fields are the username and encoded password for the
account. The other fields relate to account expiration and password aging.
[Note that in the shadow file, it cannot be continued across two lines, as we
have done here to make it fit in the magazine—ED]

change_date encodes the date of the most recent password change.
min_change and max_change indicate the minimum and maximum number of
days between password changes, and warn indicates the number of days
before a password expires that the user is warned of this fact. inactive
specifies how many days after its password has expired that an account is
automatically disabled, and expire encodes the date upon which the account
itself will expire and be disabled.

Here is a sample entry from /etc/shadow:

chavez:XdleIqAert:9422:7:180:5:21::

User chavez can keep the same password for at most 180 days, and she will be
warned 5 days before her password expires. When she does change her
password, she must keep the new one for at least 7 days. If she doesn't use her

account for 21 days, it will be automatically disabled. No expiration date is set
for user chavez's account.

Once /etc/shadow is installed, it can be edited directly. However, the shadow
package also provides tools for manipulating entries within it. Its version of the
passwd command updates passwords within the shadow password file, and
the command also has additional options for modifying the other password
settings. For example, the following command changes the minimum password
lifetime to 2 days, the maximum password lifetime to 1 year, the warning
period to 3 days, and the inactive period to two months for user chavez:

passwd -n 2 -x 365 -w 3 -i 60 chavez

If you wanted to remove all aging controls from an account, use this
combination of options:

passwd -n 0 -x 99999 -i -1 angela

These are the default values (along with a warning period of 14 days, which is
irrelevant when passwords essentially never expire).

Account expiration dates are set with the usermod command. The following
command sets the account expiration date to January 1, 1999 for user chavez:

usermod -e 1/1/1999 chavez

Note that the useradd and usermod commands may also be used to create
user accounts and specify or alter these and other account settings.

passwd's -l and -uoptions may be used to manually lock (i.e., prevent logins)
and unlock an account respectively:

passwd -l badboy

Finally, the chage -d command may be used to force a user to change his
password at his next login; this option sets the date of the last password
change field. It may be used to force a password change at a user's next login,
provided that a maximum password lifetime is also set. Here is a simple script
which accomplishes this:

#!/bin/csh
force_change username -- run as root
chage -l $1 >& /dev/null
if ($status == 1) then
 echo force_change: invalid user "\$1\"
 exit 1
endif
set max=`grep ^$1\: /etc/shadow | \

 awk -F: '{print $5}'`
chage -d `date +%D` $1
set today=`grep ^$1\: /etc/shadow | \
 awk -F: '{print $3}'`
set yest=`expr $today - 1`
if ($max >= $yest) set max=`expr $yest - 1`
set date=`expr $yest - $max`
chage -M $max -I 2 -W 7 -d $date $1

The script extracts the current maximum password lifetime setting, sets the
password change date to today, and then extracts the equivalent integer value
(the number of days since 1/1/1970). It then sets the password change date to
yesterday, reducing the maximum lifetime if necessary so that a password
expiration is possible on that date. It also sets the inactivity period to 2 days
and the warning period to 1 week.

shadow's Configuration File

Default settings for password aging settings are defined in the configuration file
for the shadow package, usually defined as /etc/login.defs. This file contains a
variety of entries which control various aspects of how the package functions,
all well-documented in its comment lines, and you should examine this file
carefully and select settings which make sense for your system.

Here are some of the most important entries from this file, along with my
suggestions for their values:

Enable dialup passwords.
DIALUPS_CHECK_ENAB yes

Track login failures in /var/adm/faillog.
FAILLOG_ENAB yes
LOG_UNKFAIL_ENAB yes

Track login times in /var/adm/lastlog.
LASTLOG_ENAB yes

Enable password obscurity checking.
OBSCURE_CHECKS_ENAB yes

Enable login time restrictions (/etc/porttime).
PORTTIME_CHECKS_ENAB yes

Specify the su log file.
SULOG_FILE /var/adm/sulog

Enable use of /etc/nologin file to prevent
non-root logins. The contents of the file
is displayed as an error message.
NOLOGINS_FILE /etc/nologin

Password aging settings.
PASS_MAX_DAYS 186
PASS_MIN_DAYS 7
PASS_WARN_AGE 14

Set minimum password length.
PASS_MIN_LEN 12

Selecting Good Passwords

Making sure that all accounts have passwords that are changed regularly is
only part of what is necessary to get the maximum protection from passwords.
Passwords must also remain secret, and they must be hard to guess—for either
a program or a human—to be most effective. The first of these can only be
ensured by educating users about the importance of passwords to system
security. It is possible to have a little more control over the second.

Bad password choices include all correctly-spelled words, proper names, and
names or numbers significant to the person choosing the password, as well as
simple transformations of any of these items: reversals, simple capitalization
changes, rotations, adding a digit at the end, and the like.

Good passwords include a variety of character types—upper and lowercase
letters, numbers and symbols, and control characters. Longer passwords are
also better than shorter ones. I strongly recommend enabling the shadow
package's double-length password capabilities, setting a minimum length of 10
or 12 characters and allowing up to 16.

The shadow package has only minimal capabilities for checking the qualities of
the password that users choose. However, there are other packages which
provide this function by substituting an alternate version of the passwd
command. The npasswd package can check proposed passwords against words
in online dictionaries. The passwd+ package checks proposed passwords
against one or more dictionaries, and also tests transformations of the
proposed passwords according to instructions provided by the configuration
file. The file /etc/passwd.test can be customized by the system administrator.
Listing 1 gives some sample entries from the file which will give you a sense of
passwd+'s capabilities.

sample passwd+ configuration file
Test Error Message
#
(%#a==8)&((%#c==0)|(%#w==0)) Include a capital letter or numeral.
(%#l>5)|(%#c==0) Must include a nonalphabetic character.
#
"%*p"=~"^%*u$" Can't use username as password.
"%*p"=~"^%-*u$" Can't use reversed username as password.
"%*p"=~"^%*f%*f$" Can't use doubled first name as password.
#
{tr A-Z a-z < /usr/dict/words} =~ "%*p" Password found in dictionary.

Each entry lists a type of unacceptable password and gives an appropriate error
message to be displayed to the user if such a password is proposed. The
following symbols are used in the sample rules defining unacceptable
passwords (passwd+ offers many more as well):

%p proposed password

%a alphanumeric character
%l lowercase letters
%c capital letters
%w numerals
%u username
%f first name
%-x reversed version of x (e.g. %-p =
reversed proposed password)
%*x lowercased version of x
%# number of x's in proposed password
(e.g. %#w = # of numerals)
& logical AND
| logical OR
== equals
=~ matches pattern
^ beginning of line
$ end of line

The first section of the sample file checks structure of the proposed password.
The first entry rejects 8-character all-lowercase passwords, and the second
entry says that passwords containing 6 or more lowercase letters must also
contain a capital letter.

The second section of the file tests the password against items from the user's
password file entry as well as some transformations of them. The third section
performs a case-insensitive comparison of the password with the words in the
system's dictionary file.

By default, passwd+ is designed to be used as a stand-alone replacement for
the normal passwd command, and it is not aware of the shadow password file.
However, it is not very difficult to modify it for use on systems with shadow
passwords; one method involves modifying the obscure routine in the shadow
package to call the verify routine in the passwd+ package.

You can also use the Crack facility to check the quality of users' existing
passwords. (Note that it is unethical to run Crack without permission on the
password file from systems where you are not the system administrator!) Crack
is easy to build and use, and it includes a shadmrg utility (in its Scripts
subdirectory) which can reconstruct a traditional /etc/passwd-style file on a
system using the shadow package. For example:

cd /usr/src/Crack*
Scripts/shadmrg > passwd.test
Crack passwd.test

If you choose to use Crack, it is extremely important to ensure that the program
and all of the data and results files that it creates are protected against all non-
root access.

Secondary Authentication

In some circumstances, you may want to use some means of determining that
a user is who she says she is in addition to standard passwords. To address

such a need, the shadow package also supports entries like the following in /
etc/shadow:

chavez:XdleIqAert;@/sbin/extra:9422:7:180:5:21::
harvey:<\@>/sbin/extra:9233:0:99999:0:-1::

When user chavez logs in, she is prompted for her password, and then the
program /sbin/extra runs as a secondary authentication program. This
program, supplied by the system administrator, can perform whatever sort of
additional authentication is desired, returning a value of 0 or 1 depending on
whether the user has passed or failed. The second entry indicates that user
harvey runs /sbin/extra as his only authentication method. In the shadow file
syntax, the @ sign introduces the alternate or additional authentication
program, and a semicolon is used to separate it from the encoded password.

Dialup Passwords

The final feature of the shadow package we consider is its dialup password
facility, which allows you to require an additional password from users who
connect to the system via a dialup line. When this feature is enabled, two
additional configuration files are used, /etc/dialups and /etc/d_passwd. /etc/
dialups contains a list of special filenames for serial lines that are to be
protected with an additional password whenever someone dials into the
system (one per line), and /etc/d_passwd holds the encoded dialup passwords.

Dialup passwords are assigned on a shell-by-shell basis, and the dpasswd
command is used to create and change them. For example, the following
command will allow you to change the current dialup password for the shell /
bin/bash:

dpasswd /bin/bash

Dialup passwords will not be required from users using shells that are not
listed in /etc/d_passwd.

sudo: Selective Access to root

One of the biggest weaknesses with UNIX security in general is its all-or-nothing
approach to system privilege: root is powerful, so it is only prudent to limit
access to the root account as much as possible. The sudo facility enables non-
root users to run specified commands as root without having to know the root
password, allowing a system administrator to provide users with just the level
of access they actually need.

A user uses the facility by prefacing the command he wants to run with the
sudo command:

$ sudo mount hamlet:/data /mnt

:sudo will require the user to enter his own password before completing the
command. Thus, in this case, using sudo allows this user to use the mount
command without knowing the root password.

Access to sudo is controlled by its configuration file, /etc/sudoers. This file
specifies which users can use sudo along with the commands they are allowed
to execute. Here is a small extract from such a file:

chavez ALL=ALL
harvey ALL=/bin/mount,/bin/umount
nelson ALL=!/sbin/shutdown

Usernames are the first field in each entry, followed by one or more access
description strings which have the general form: host(s)=command(s).
Based upon these entries, user chavez can use sudo to run any command on
any system, user harvey can mount and unmount disks, and user nelson can
run any command except shutdown. Note that these examples represent only
the simplest form of this file; its actual syntax is very flexible and powerful,
allowing you to define named groups of hosts and/or commands and thereby
specify exact access for each user-host-command combination in as much
detail as necessary.

For More Information About System Security

Books

Practical Internet and UNIX Security, (2nd edition of Practical UNIX Security),
Simson Garfinkel and Gene Spafford (O'Reilly & Associates, late 1995 or early
1996). An excellent book-length treatment of system security and the
associated system administrative concerns and tasks.

Essential System Administration, 2nd edition, Æleen Frisch (O'Reilly &
Associates, 1995). A substantial chapter is devoted to system security, as are
numerous additional sections throughout the book.

Firewalls and Internet Security, William R. Cheswick and Steven M. Bellovin,
(Addison-Wesley, 1994); Building Internet Firewalls, D. Brent Chapman and
Elizabeth D. Zwicky (O'Reilly & Associates, 1995). Two essential books for
anyone considering setting up a firewall system.

Security Alerts Mailing Lists

The Computer Emergency Response Team (CERT) manages the primary UNIX-
related security-alert system. Send mail to cert-advisory-request@cert.org to be

mailto:cert-advisory-request@cert.org

added to the mailing list. Past advisories and updates are available via
anonymous ftp at info.cert.org:/pub/cert_advisories.

There is also a Linux-specific security advisory mailing list. Send mail to
majordomo@linux.nrao.edu with subscribe linux-alert in the body of the
message to be added to the list. You may also want to subscribe to the linux-
security mailing list, which is a moderated discussion list for Linux-related
security topics. (To subscribe, include subscribe linux-security in the body of a
message to the same email address.) The archives for these mailing lists are
available via anonymous ftp at linux.nrao.edu:/pub/linux/security/list-archive.

Æleen Frisch (aefrisch@lorentzian.com) manages a very heterogeneous
network of Linux and other UNIX systems and PCs. Having recently finished
second editions of two books, she looks forward to pursuing her true calling:
pulling the string for her cats, Daphne and Sarah.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:majordomo@linux.nrao.edu
mailto:aefrisch@lorentzian.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

New Products

LJ Staff

Issue #21, January 1996

SCSIserver SC16, Freedom Desktop for Linux and more.

SCSIserver SC16

ABLE Communications Inc. has announced SC16, a SCSI-based terminal server
for Unix and Linux based platforms. The SCSIserver SC16 features full modem
control and baud rates up to 115kbs for all channels. It comes with 16 ports in a
single enclosure, including a universal power supply. The SC16 is ideally suited
for multi-user applications or where system operators are controlling large
banks of modems. Seven SC16s can be used together for up to 112 ports on a
single system. Price: $1595.

Contact: ABLE Communications, 2823 McGaw, Irvine, CA 92714 Phone:
714-553-8825. Fax: 714-553-1320.

Freedom Desktop for Linux

Freedom Software, in partnership with Thinking Objects Software GmbH, has
announced that the Freedom Desktop for Motif is now available for Linux.
Freedom Desktop for Motif is an easy-to-use yet powerful desktop manager/
GUI integrated with the Unix environment. It combines ease of use and
advanced features to help users interact with Unix quickly and efficiently. It also
runs transparently in a variety of Unix environments, from desktop computers
to enterprise workstations. A free evaluation copy may be retrieved from
fsw.com in /pub.

Contact: Freedom Software, 9F Oliver Court, Pittsburgh, PA 15239. Phone:
412-327-4940. Fax: 412-327-6518. E-mail: support@freedom.lm.com or
uhl@to.com . URL: www.fsw.com.

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:support@freedom.lm.com
mailto:uhl@to.com
http://www.fsw.com

FairCom releases Linux Server

FairCom Corporation has released the first commercial version of the FairCom
Server and SQL Server for Linux. According to Winston Atkisson, Senior
Engineer at FairCom, “FairCom's Linux Server offers true client/server
architecture and heterogeneous network support.” The Linux Server is priced
from $495 to $2395, depending on the number of users.

Contact: FairCom Corporation, 4006 West Broadway, Columbia, MO 65203.
Phone: 800-234-8180. Fax: 314-445-9698.

BOOT ROM for Workstations

If you want to make a “diskless” workstation truly diskless, you can use a BOOT
ROM. This read-only memory chip with the boot code burned into it plugs into
your Ethernet adapter and loads the kernel of your operating system via the
network. BOOT ROM comes with a floppy disk containing all the software
necessary to set up your Linux machine as a boot server for a network of
diskless Linux workstations. Source code for all the software is available upon
request on a second floppy disk. Currently, BOOT ROMs are available for 3c509
(3com) and NE2000 (generic) cards. Price: BOOT ROM, $14.00 + shipping;
Source code, $2.00 + shipping.

Contact: bootrom@datawire.com for more information or to order.

Chat Server Available

The Chat Server is a continuous-stream, real-time, multimedia-capable, web-
based communication server developed by Magma Communications Ltd.
Developed in a Linux environment for Linux-based machines, it works with
practically all Web browsers, but to take advantage of Chat Server's continuous-
stream capabilities, the Netscape browser is required on the client end. The
Chat Server is not a cgi-script but a specialized server designed for a chatting
environment. The Linux version of the Chat Server is available now, with ports
to BSDI, Sun, NT, and HP-UX in the works.

Further information on the Chat Server can be found at Magma
Communications Ltd.'s website at www.magmacom.com/chatserver/
index.html.

Volant Corporation Announces htmlscript

Volant Corporation has announced the availability of an easy-to-use language
for Web Servers called htmlscript. Completely browser independent, htmlscript
allows users to develop interactive web pages in a server-safe environment.

mailto:bootrom@datawire.com
http://www.magmacom.com/chatserver/index.html
http://www.magmacom.com/chatserver/index.html

The software is available for most Unix and Unix work-alike systems. Access to
reference documentation is available at http://htmlscript.volant.com/. Price:
$99.00 for a 500-user license, which includes one year of free updates.

Contact: Volant Corporation, 2629 Ariane Drive, San Diego, CA 92117. Phone:
619-490-2570. E-mail: htsinfo@volant.com.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

http://htmlscript.volant.com
mailto:htsinfo@volant.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

The chmod Command

Eric Goebelbecker

Issue #21, January 1996

How to use the versatile command chmod.

Do you know how to rename a file you can't read? Better yet, do you know how
other users can rename your files? Have you ever ftp'd a program from another
host and been unable to run it?

The subject of file permissions, and how to manipulate them with the chmod

command, is a good place to start learning about these situations.

First, let's create a file and examine its long listing. (In order to fit in the
magazine, all the listings in this article are trimmed to fit.)

$ touch test_file
$ ls -l test_file
-rw-rw-r-- 1 eric users

Since I created this file, it makes sense that the third column shows my user
name as the file's owner and that the fourth shows my group. (On some
systems, the group name may be the same as the user name.) As you follow
along in these examples, you will see your username in place of “eric”.

The leftmost column of the directory listing shows the file's mode. Mode is the
term used to refer to a file's permissions. ls displays the file's type and mode
together as a grouping of ten one-character fields:

The type field has several valid values. For the sake of this tutorial, we are only
concerned with two: empty (-) for a regular file, and d for directories.

Type Owner Group World - rwx rw- r--

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

The other three columns cover the three classes of access that are stored for
each file in a Unix-like file system. Linux (and Unix) evaluates access in terms of
user ownership, group ownership and world (or other).

For each of these classes, rights are evaluated in terms of three operations:
reading (r), writing (w) and executing (x). The permissions above specify “full”
access for the owner, reading and writing for group, and only reading for world
(an unusual combination used for demonstration). Those permissions specify
that

• The owner of the file is allowed to read, write and execute the file.
• Any user who is a member of the group that owns the file is permitted to

write to the file.
• Any other user can only read the file.

Changing permissions

If test_file were a very important document that we did not want anyone to be
able to modify or delete, we would need to remove write access from group:

$ chmod g-w test_file
$ ls -l test_file
-rw-r--r-- 1 eric users

We see that the w for group is now replaced with a -, signifying that write
permission is denied to members of the group users.

If test_file contained sensitive information that only members of the group
users should be able to review:

$ chmod o-r test_file
$ ls -l test_file
-rw-r----- 1 eric users

Now we see that the last triplet of the mode field, which specifies permissions
for world, are all dashes. This means that other users who do not belong to the
users group have no permissions to do anything with test_file whatsoever.

The command line usage for chmod mode looks like this:

chmod [options] new-mode filename

The new mode is specified in octal mode or symbolic mode. We'll cover
symbolic mode first. In the first example we used g-w to remove write
permission for group. As you might be able to guess, g stood for group, - for
remove and w represented write permission.

$ chmod g+wx test_file
$ ls -l test_file
-rw-rwx--- 1 eric users

This operation added permission for group to write and execute.

Let's look at an example of these permissions in action.

$ chmod u-rwx test_file
$ ls -l test_file
----rwx--- 1 eric users
$ cat test_file
cat: test_file: Permission denied
$ cat .profile > test_file
bash: test_file: Permission denied

We are not able to display the file's contents because we do not have read
access to our own file. When we specified u-rwx to chmod, we removed all
access for the user (the file's owner). We were also denied permission when we
attempted to add the contents of another file to it since we removed write
access. (I should note that rm would still be able to delete this file, although it
will normally request confirmation.)

$ chmod u+rwx test_file
$ ls -l test_file
-rwxrwx--- 1 eric users

When we specify u+rwx, all permissions are restored. Removing permissions
from a file we own does not affect our ability to restore the permissions,
because the mode is not stored in the file. It is stored in a structure called an
inode entry. Only the owner of the file (and root) may modify this.

Understanding chmod

Let's look at a summary of chmod's options, and then cover each option in
depth:

User

u user (owner)

g group

o other (world)

a all (user, group, and other)

Operation

+ add

- remove

= set exactly

Mode

r read

w write

x execute

X conditionally set execute

s Set UID or set GID

t set “sticky” bit

$ chmod a+rwx test_file
$ ls -l test_file
-rwxrwxrwx 1 eric users

This demonstrates the fourth possible symbol for user when using symbolic
mode. We used a to set full permissions for all user classes at once. Let's delete
the file and start over in order to demonstrate the difference between the =
operator and the + and - operators. (From here on, we'll assume that you know
how to get the directory listing, and won't list the ls command.)

$ rm test_file
$ touch test_file
-rw-rw-r-- 1 eric users
$ chmod g+x test_file
-rw-rwxr-- 1 eric users

This added execute permission for group.

$ chmod g=x test_file
-rw---xr-- 1 eric users

The = operators set group's permissions to execute, and in doing so removed
read and write permission. While + and - set or unset the permissions specified,
= will set exactly the mode specified and remove any others.

Read, write and execute modes are very straightforward when referring to files.
Read and write allow a user to examine and modify/delete data from a file,
respectively. Execute allows a user to execute a shell script or binary program.
If you ftp a program from one host to another and then try to run it without
setting execute permission, it will fail, since ftp does not set execute
permission.

Directories

For directories, the rules can be a bit more complicated.

Read permission allows a user to examine the contents of a directory.

$ mkdir test_dir
$ touch test_dir/foo
$ ls test_dir
foo
$ chmod u-r test_dir
$ ls test_dir
ls: test_dir: Permission denied

Write permission allows a user to modify the contents of the directory. That
means that lack of write permission on a directory does not prevent a user
from modifying a file within the directory, if the file's permissions allow it. It
does prevent the user from renaming, moving, deleting or creating any file in
the directory. This is because a directory is a really a file that contains a list of
filenames, and so read and write permission control access to that list.

$ chmod u=rx test_dir
dr-xrwxr-x 2 eric users
$ touch test_dir/bar
touch: test_dir/bar: Permission denied
$ mv test_dir/foo ./foo
mv: cannot move `test_dir/foo' to `./foo':
Permission denied

This property also works the other way. Since write permission allows the
modification of directory entries, a user can move or rename a file without

permission to examine the contents. This is a very good reason for paying
attention to write access for important directories.

To demonstrate:

$ ls -l test_dir
-rw-rw-r-- 2 eric users foo
$ chmod u=rwx test_dir
$ chmod u=rx test_dir/foo
$ cat .bashrc > test_dir/foo
bash: test_dir/foo: Permission denied
$ mv test_dir/foo ./foo
$ ls test_dir
(It's empty)
$ ls foo
foo (It's in our present directory.)

Execute permission for directories (also referred to as search permission) is
also very important. Execute permission is necessary for accessing a directory.

$ chmod u=rwx test_dir
$ cp ~/.bashrc test_dir
(any text file will do)
$ chmod u=rw test_dir
$ cd test_dir
bash: test_dir: Permission denied
$ cat test_dir/.bashrc
cat: test_dir/.bashrc: Permission denied

This copy of .bashrc does not do us a lot of good. However, setting execute
permission for directory and not setting read or write can come in handy.

$ chmod u=x test_dir
$ cat test_dir/.bashrc
(we see the contents of the file)
$ ls test_dir
ls: test_dir: Permission denied

A directory that has execute permission only can be used to “hide” files. Only
users who know the exact file name and path can access them; this includes
both data files and programs.

Conditional execute

Let's return to test_file to examine the X option.

$ chmod u=rw,g=r,o=r test_file
-rw-r--r-- 1 eric users
$ chmod o+X test_file
-rw-r--r-- 1 eric users
$ chmod u+x test_file
-rwxr--r-- 1 eric users
$ chmod o+X test_file
-rwxr--r-x 1 eric users

In the first command, we see that we can set options for more than one class at
a time by using a comma to separate the mode specifications. Here, we set the
mode so that no user has execute permission. In the second command, we try
to set execute permission for other with X. This fails, because X only works
when one of the classes already has execute permissions. When we add
execute permissions for owner, X sets executable permission for other.

The s option sets or removes set UID (SUID) and set GID (SGID) mode. These
modes are very important in terms of UNIX/Linux security. When a file has SUID
mode set, the process executing it has the effective rights of the file's owner for
the duration of the program's execution.

For example, the program dip is used to create SLIP network connections. This
requires root access, because creating a network interface device requires root
access. Instead of forcing users to become root in order to use dip, which
would require that the users know the root password, the dip program can
belong to root and have the SUID mode set.

$ ls -l /usr/sbin/dip
-r-s--x--- 1 root dip

The s in the spot for user's execute field indicates the SUID mode is set.
Another example of a use for the SUID mode is the passwd program, which
allows users to modify the passwd (or shadow) file.

For security reasons, the SUID bit can affect only binary programs; it has no
effect on shell scripts in Linux.

The SGID mode sets the group instead of the owner, and is set with (for
example) g+s. It also has another purpose.

When a user creates a new file the group ownership defaults to the user's
default group, which is the one listed in the passwd file. Sometimes users
belong to more than one group and want to share files. The SGID mode can
provide a convenient method for this. If the SGID mode bit is set for a directory,
new files created in that directory will belong to that group, regardless of the
creator's default group. If you belong to more than one group, try this. (You can
check what groups you belong to with the id command. The default group is
listed first, and you can use the chgrp command to change the group
ownership of a file to another group you are a member of.)

$ mkdir test_dir
$ chgrp nondefault test_dir
$ chmod g+s test_dir
$ touch test_dir/foo
$ ls -l test_dir/foo
-rw-rw-r-- 1 eric nondefault

The SUID and SGID modes can be a security hole. However, when used
carefully, they are very valuable tools and actually enhance system security by
providing an alternative to distributing important passwords.

Make it simple

Specifying user classes can be used to simplify copying permissions.

$ chmod g=u test_file
-rwxrwxr-x 1 eric users

This copied the permissions from user to group. All of the classes can be used
on the right side of the +, - or = operators in this way.

$ chmod o-u test_file
-rwxrwx--- 1 eric users

This cleared all of the permissions that user has from other.

The last mode listed above is the t option, known as the “sticky bit”. This mode
is actually supported on the command line for compatibility purposes with shell
scripts from older operating systems. It is not needed for Linux. If an
installation guide instructs you to use it, it actually does nothing.

Do your math

File access modes can also be set using octal notation. This syntax is built by
adding the mode fields together. For each user class, the fields are calculated
this way:

• 4 Read
• 2 Write
• 1 Execute

Full permissions for any class would be 7, no permissions would be 0.

$ chmod 754 test_file
-rwxr-xr-x 1 eric users

The classes are passed to chmod in the same order ls displays them. The mode
we set is broken down this way:

 Owner = 4 + 2 + 1 = 7
 Group = 4 + 1 = 5
 World = 4 = 4

Octal mode is convenient because other utilities, such as find, expect modes to
be expressed this way.

In octal mode, SUID and SGID are set by specifying them in another column
before the user mode. For SUID use 4, for SGID use 2, and use 6 for both:

$ chmod 4755 test_file
-rwsr-xr-x 1 eric users

Power chmod

Chmod also provides a few command line options to simplify administrative
tasks. For changing file permissions in directory trees use -R.

$ chmod -R g-w test_dir

This would remove write permission for group for all of the files in and below
test_dir.

In order to control the output of messages from chmod use -c, -v and -f:

$ chmod -v 700 test_file
mode of test_file changed to 0700 (rwx------)

This option caused chmod to display how the permissions of test_file were set.
The -c option causes chmod to display messages only when files are changed,
and the -f option suppresses messages about files that can't be changed.

Chmod also provides a --version option to display the version and --help to see
a short help message.

Summary

File permissions are an integral part of Linux. The same concepts also apply to
other operating system objects such as semaphores, shared memory, and
NIS+. This tutorial provides you with some of the basic knowledge necessary to
protect your data and have more fun with your Linux system, and provides you
with mental building blocks for learning more about Linux.

Eric Goebelbecker (eric@cnct.com) is a systems analyst for Reuters America,
Inc. He supports clients (mostly financial institutions) who use market data
retrieval and manipulation APIs in trading rooms and back office operations. In
his spare time (about 15 minutes a week...), he reads about philosophy and
hacks around with Linux.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:eric@cnct.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux on Alpha AXP—Milo, The Mini-loader

David Rusling

Issue #21, January 1996

Linux on Alpha AXP—Milo, The Mini-loader

Late in 1994, I was in the US visiting my home group in Hudson, Massachusetts,
where the Alpha AXP processors are built. On a free morning, I followed up a
rumour that I had heard a few weeks before. The rumour was that Jim Paradis
was porting Linux to Alpha. At that time I did not know anything about Linux
other than that it was a freeware version of Unix developed by a student in
Finland. When I caught up with Jim, I was in for a surprise. Well, two surprises
actually: Linux—running on an Alpha laptop. We chatted for a while and I soon
became infected (if that's the right phrase) with Jim's enthusiasm.

One subject that we discussed was Linux/Alpha's need for a small loader. On an
Intel PC system, the firmware that initialises the system when it is powered on
is known as BIOS. There are several very well known providers of BIOS code,
and PCs are built to conform to a very rigid set of rules, which means that PCs
are very similar to each other in hardware terms. The equivalent software in an
Alpha-based system from Digital (and even in a VAX-based system) is the
console, and within Digital it is known as the SRM console, since its interface is
described in the System Reference Manual.

So, just why did Linux need the SRM console? Firstly, Linux needs to be loaded
from some media, and the SRM contains device drivers to do just that.
Secondly, Linux needed the Digital Unix PALcode. PALcode can be thought of as
a tiny software layer that tailors the chip to a particular operating system. It
runs in a special mode (PALmode) and has certain restrictions, but it uses the
standard Alpha instruction set. In this way, the Alpha chip can run such diverse
operating systems as Windows NT, Open VMS, Digital Unix and, of course,
Linux. Finally, Jim was using the SRM call backs in his prototype device drivers.
From Linux's point of view, though, the SRM Console does too much. It contains
call back procedures that allow the running operating system to write
messages to the console or to write environment variables and so on. Linux

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

makes no use of these functions; in fact, the only part of the SRM console
needed, once it loads Linux, is the PALcode.

I volunteered to write a loader that would be small and would do only those
things that Linux needed. Like all good projects, my one-man effort had some
straightforward project goals. First and foremost, the software would be under
free licence, built and freely distributed as part of standard Linux distributions.
Secondly, Linux drivers should be able to be used within Milo without
modification or even re-compilation. Thirdly, it should maximize the amount of
memory available to Linux. Little did I realise quite what I was letting myself in
for.

Milo

Milo contains the following functional pieces:

• PALcode
• Device drivers
• Linux Kernel and pseudo-Kernel
• Linux Kernel interface code
• User interface code

Finding Digital Unix PALcode was no problem. Back in 1992 when Digital
announced the Alpha processor, it also announced that it was moving into the
merchant chip market. I joined a small group in the UK to provide engineering
effort in Europe to further these aims. We are a small offshoot of the main
group, which is based in the silicon factory in Hudson, Mass. We build
evaluation boards for the Alpha processors and PCI peripheral chips. These
systems included a very low level Evaluation Board Debug Monitor that uses
Digital Unix PALcode. The sources for the Evaluation Board Debug Monitor and
the PALcode are under free licence.

Although this PALcode is fully compliant with the interface described in the
Alpha Architecture Manual, there are some differences between it and the SRM
console's PALcode. One of the differences between Alpha based systems is the
way interrupts are handled outside of the processor itself. There are a limited
number of interrupt signals into the CPU itself, and the number varies from
CPU to CPU, but there are typically three: timer, I/O and non-maskable
interrupt.

The way in which real device interrupts are mapped onto CPU interrupts is
system-specific. Most current Alpha systems include an ISA bus, whose
interrupts are routed through a pair of 8259s in the same way as on x86 PCs.
The SRM console PALcode handles these differences and interprets the

interrupt, passing it to the OS's interrupt handling code as an “SCB offset”
(described by Jim Paradis in last month's Kernel Korner). The PALcode used in
Milo does not do this interpretation, so the OS's interrupt handling code must
do it instead. Particularly with PCI devices, there must be code in the PCI BIOS
code and within the interrupt handler that understands how interrupts are
routed in the system. One side effect of this is that when Linux has been loaded
by Milo, the interrupt handler can handle more than one device's interrupt
each time it is called.

One interesting and useful feature of the example PALcode I adopted from our
Alpha evaluation boards is that it allows the Evaluation Board Debug Monitor to
run in 1-to-1 physical addressing mode. Bit 0 of the virtual page table base
register turns this feature on and off. When translation buffer misses occur, the
PALcode builds a new page table entry and inserts it into the cache. Pretty
much the first thing that Milo does when it is loaded is to swap to this PALcode
in physical address mode. The last thing that the Mini loader does is to swap to
this PALcode again, this time passing final control to the Linux kernel.

Milo must turn virtual memory mapping on as it passes control to the kernel,
because Linux expects that a control structure called the Hardware Restart
Parameter Block (HWRPB) is at the right virtual address. Amongst other things,
this describes the type of system and how much memory is free, together with
where the memory is. As Linux was first loaded via the SRM console, it naturally
used the interface provided by the SRM, which was the HWRPB, as described in
the Alpha Architecture Manual. I could see no reason to change this interface:
there are enough interfaces in the world, so why invent yet another one?

In order for Milo to set up the memory mapping correctly, it must itself have a
good idea of what memory is available and what it is being used for. It finds the
amount of memory available because after the PAL reset code has been
executed, the size of memory is put into the impure area, a data structure
shared between the PALcode and the console or Evaluation Board Debug
Monitor. Milo keeps a memory map describing what each page in the system is
being used for. While device drivers are running, they allocate temporary
memory and use it. Just before control is passed to Linux, Milo must build a
correct memory cluster description in the HWRPB, and the memory map is
used to do this. Pages are marked as “free”, “allocated” or “temporarily
allocated” in the memory map. When Milo builds the memory cluster
descriptions in the HWRPB, it treats all temporarily allocated memory as free,
since they will be free once Linux starts to run. In this way, the only memory
that is marked as allocated is the memory containing the PALcode (8 pages),
the memory for the HWRPB (1 page) and the memory for the level 2 and level 3
page tables (2 pages): 11 pages in total. I think I've succeeded in my goal of
maximizing the amount of memory available to Linux.

Device drivers

One of the really excellent things about Linux is the number of device drivers
that have been developed for it. It seems as if any commercially-available card
or chip set has a driver already written for it. It therefore seemed vital that Milo
should be able to make use of those drivers. This allows companies building
Alpha-based systems to differentiate their products by having a vast choice of
possible devices.

To run the device drivers unmodified, I had to duplicate some services of the
Linux kernel. Originally, I planned not to have real interrupts, but instead to poll
the drivers. This was the way that Milo worked in Linux 1.1.68. However, once I
started to try and get the NCR 53C810 SCSI driver working in Milo, I ended up
needing proper interrupt handling, and it seemed best to take the interrupt
handling directly from Linux, which I did.

I have tried to keep the number of Linux services that I have had to duplicate in
Milo to a minimum. After all, as Linux progresses, these routines tend to need
re-writing. A good example is the change from 1.1.68 and 1.2.8; the floppy
driver changed its way of determining that it was running during kernel
initialisation. This caused me headaches as I figured this out.

Maybe over time I will incorporate more of the real Linux kernel into Milo, but it
is supposed to be the Mini loader, so I do not want to add the whole of the
kernel into it. Right now, Milo includes the PCI BIOS code, the block device code,
the interrupt handling and DMA code directly from the kernel. The scheduling
services are mine and I cannot see them changing unless I add multi-threading
support.

Using Milo

The final functional piece of Milo is the part that most users see, the user
interface. Milo can operate via the serial port, but mainly people use it via the
system console. For this reason, it must have some keyboard and VGA
initialization code.

The keyboard code is very very simple and does just enough to take in
commands correctly. Linux itself assumes that some BIOS code has initialized
the VGA device and its console device drivers just use it; that meant that Milo
had to initialize the VGA device. There are two ways of doing this. The first is to
have very simple ISA VGA initialisation code, and this is how Milo first operated.
The second way is to include BIOS emulation code that can run the on-board
initialisation (which is Intel x86 object code) from the different video cards.
David Mosberger-Tang pulled this part of Milo together, with the result that it
can successfully initialise a number of common ISA and PCI graphics cards.

The Milo interface is meant to be very simple and do just enough to get the
right kernel loaded and to pass the right boot arguments to it. Typing anything
other than a legal command displays all of the commands available. Right now,
Milo assumes that all devices that it can see are available to boot from and will
attempt to use the EXT2 file system with them.

Loading the Loader

Milo was developed on an Alpha evaluation board (an EB66, which is a 21066
based system similar to the AxpPCI33). This meant that loading and testing Milo
was easy, since the Evaluation Board Debug Monitor was running. However, for
real systems like the AxpPCI33 (Noname), Milo needs to be loaded some other
way.

Alpha-based systems boot in several steps. The first step, immediately after
power on, is to clock the SROM code directly into the I-Cache stream and then
to start executing it. This code does really basic system set up such as figuring
out how many DRAM slots are occupied, and with what size of memory. The
next step varies from system to system, but essentially that SROM code loads
the firmware code (whatever it is) into memory and passes control to it in
PALmode. This is the PALcode reset entry point for the image. Some firmware,
notably Milo, has the address of the entry point to the user-mode firmware
defaulted in the PALcode, and that is where control is passed to when the
PALcode reset code has finished initialising the system. Other systems have this
information stored in NVRAM or infer it from jumper settings.

For a variety of reasons, Milo can be loaded from a failsafe boot block floppy,
from flash, and via the Windows NT ARC firmware. What varies most from
system to system is where the SROM code is able to load firmware from. On
the AxpPCI33, the SROM code is capable of loading from flash, from a serial
line, or from a failsafe boot block floppy. On the AlphaPC64, the failsafe boot
block floppy is not supported. All of this is controlled by jumpers and/or boot
options saved in NVRAM (in the TOY clock in the AlphaPC64's case). There are
systems that do not support flash and instead have ROMs. These are not easy
for users to change without access to a ROM blower. and so yet another way
must be found for Milo to be loaded. Paradoxically, you could load Milo via the
SRM console, but a more fruitful approach is to load it via the Windows NT ARC
firmware, since that is the firmware these boards ship with.

There are a number of ways to put an image into flash, and for this reason Milo
supports running any image, so long as it is linked to where the Linux kernel
usually is. In this way, I can build images that update the flash when loaded and
not burden Milo with knowing about the flash requirements of every different
system that it runs on.

Loading via the Windows NT ARC console is interesting. On Alpha, Windows NT
runs in “super paged” mode, which does not support KSEG addressing—which
is unfortunately exactly what Linux needs for fully 64-bit operations. However,
all PALcode implementations must support the “Swap Pal” call, and this allows
you to change from one mode to another. The Windows NT ARC console has
within it the notion of running images and providing services to them so long as
they are built to run in the appropriate addressing mode and run at a safe
place in memory.

Thus, the Windows NT OS loader is in fact an executable image which gets
loaded in order to load Windows NT using the appropriate call backs. I have
written a very simple OS loader whose only function is to load Milo, which in
turn loads Linux. It is this simple loader which makes the “Swap Pal” call which
causes control to be passed to Milo and KSEG addressing turned on. From then
on, Milo operates exactly as before with the addition that it can execute
commands passed via the [cw]OSLOADOPTIONS[ecw] environment variable for
this boot option, and thus boot directly without pausing at the Milo prompt.

I have tried to eliminate this need for an image that is built under the Windows
NT firmware development tree; unfortunately this is not possible, so I have kept
the functionality of this part as minimal as possible.

Of course, loading Milo via the Windows NT ARC console is one way to get Milo
running so that Milo can run the flash update utility to put itself into flash.
Alternatively, it can be a way of running either operating system without one
interfering with the other.

The Future

Milo is in its infancy and I hope to see the Linux community add into it what
they need. After all, that is part of the attraction of Linux itself—a community of
able, enthusiastic programmers adding to the effort.

David Rusling (david.rusling@reo.mts.dec.com) lives in Wokingham, England
with his wife, two children, 3 cats, and his 1977 MGB GT. He works for the
Semiconductor Division of Digital Equipment Corporation, and he thinks that
Linux on Alpha is the best thing that he's been involved with in his 10 years at
Digital.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:david.rusling@reo.mts.dec.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Linux Universe

Christopher Boscolo

Issue #21, January 1996

The book is actually an installation guide with some reference material tacked
on to the end.

Authors: Stefan Strobel and Thomas Uhl

Publisher: Springer-Verlag

ISBN: 0-387-94506-7

Price: $34.95

Reviewer: Christopher Boscolo

While perusing the Linux section of a local book store, I ran across Linux
Universe. The teasers on the back of the book describe a 32-bit multi-user/
multitasking UNIX system that runs directly from a CD-ROM. They also mention:
easy access to the Internet, a graphical administration tool, and ELF file format.
At first, I thought this was yet another Linux book accompanied by existing
Linux distributions on CD-ROM. However, I discovered that Linux Universe was
a completely new distribution. The book is actually an installation guide with
some reference material tacked on to the end.

It is not clear which type of user Linux Universe is targeting. The professional-
looking install program and GUI administration tool would seem to indicate a
target audience of beginner to intermediate users. For this reason, I paid
special attention to ease of use and clarity of the documentation.

What Is Included

The book contains 7 chapters of installation instructions, a reference, and the
Linux Universe CD-ROM. Chapters 1-3 contain an introduction and system

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

requirements information, while chapters 4-6 cover the installation and
configuration. Chapter 7 describes how to use the GUI administration tool, and
the purpose of system directories such as /etc and /var. The last section of the
book is a reference containing UNIX command descriptions. However, the book
was by no means a complete reference to configuring a Linux system.

Linux Universe uses System V style startup scripts, (i.e., rc1.d, rc2.d...). It also
uses the new ELF format executables. The 1.2.0 kernel that is installed includes
support for most hardware. It includes X11R6 and most of the popular utilities
found in other distributions.

One area where the Linux Universe distribution seems to fall short is in
telecommunications and Internet access. Although the book mentions easy
Internet access, I could not find Netscape or Mosaic, and PPP support is not
compiled into the kernel. [Licensing restrictions make it difficult to put Mosaic
and Netscape on a CD—ED]

Two Linux Universe utilities make it shine as a potential commercial
distribution: the Boot Manager and xadmin. Linux Universe uses its own OS
loader instead of LILO. The Linux Universe boot manager is probably the best
boot manager I have used. Its 3D looking text interface displays a countdown
while booting, and allows you to interrupt it. You can also change what and
how you want to boot on the fly. This allowed me to add a configuration to boot
my previous Linux version without having to reboot with the new configuration.

The second great utility is xadmin. xadmin is a wishx application that allows you
to configure almost every aspect of your Linux system. With xadmin, I added an
account for myself, and configured the file system to mount my previous Linux
version and my MS DOS partition. xadmin can also be used to configure
network information, modem ports, printing, and to change system settings
such as time/date. Another nice feature of xadmin is the package install/
uninstall. The Linux Universe distribution treats applications such as emacs or
the Ada compiler as packages that can be installed and uninstalled through
xadmin. One difficulty was determining which features, such as man pages,
were in which packages.

Installation

I wish I could say that the installation was a breeze, but I ran into several snags.
The Linux Universe distribution ships only on a CD-ROM, with no floppy disk to
do a fresh install. This means you must have DOS or Linux already installed.
Although this is common for most distributions, it is handy to have an install
disk. First I tried to use the DOS application which starts the Linux install
program. This attempt failed due to lack of conventional memory, even though
I had over 500KB available, which is what the documentation indicates is

required. The only way I could free up some more conventional memory was to
remove my DOS CD-ROM drivers... do you see the problem here? The
alternative was to use rawrite.exe to write a Linux Universe installation boot
floppy, which worked fine.

With the boot floppy made, I rebooted and was greeted with the Boot Manager,
which then fired up Linux and the professional-looking install application. One
nice feature of the installation process was the ability to tell the installer where
to find Linux Universe installation sources. Along with the choices for different
CD-ROM types was the choice of an NFS file system. The book describes the
steps of installing Linux Universe from choosing the keyboard type to setting up
X-Windows. One complaint about the documentation was that it says to create
a swap partition but does not describe how. I also had a problem with the X-
Windows installation. The installation program has you select a mouse and
mouse port, but when X-Windows came up, the mouse was not configured
properly.

Configuration

Configuring the system after it booted was fairly simple, again because of
xadmin. The installation book suggests rebuilding the kernel after rebooting,
which I needed to do anyway, as I wanted PPP support. However, the book did
not mention which packages needed to be installed to build the kernel. After
installing the compiler and the assembler, I had to fix some of the links to
header files used by kernel sources. With the kernel rebuilt I set up PPP and
used xadmin to configure my network information with no problems.

I configured Linux Universe to use XDM. When the system booted, the root
window displayed a commercial looking Linux Universe Logo. The default
xsession is also set up well. It uses fvwm, and comes up with a utility toolbar
down the right side of the screen. Using Linux Universe with the defaults for the
user I created went smoothly.

Summary

It is difficult to see exactly which sets of users benefit the most from Linux
Universe. For beginners, it's is probably not the right choice. The snags during
installation and the lack of hard bound documentation would be
overwhelming. For beginners I would recommend a more “plug and play”
distribution, such as Yggdrasil. For the intermediate to expert users, or users
looking for easy Internet access, I would stick to other distributions as well,
such as Slackware. Linux Universe seems best suited for an intermediate user
who wants an easily administered Linux system, but is knowledgeable enough
to handle problems when they arise.

Christopher Boscolo (chris@neopath.com) orks as a Lead Software Engineer for
NeoPath, where he is working on the AutoPap 300 Automatic Pap Screener
System. When he is not working, he enjoys spending time with his wife and son.
Christopher has been using Linux for over two years as a development
platform for network management package.

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:chris@neopath.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Upcoming Events

Phil Hughes

Issue #21, January 1996

Linux Kongress in Berlin and more.

The 3rd International Linux Kongress will be held May 23 and 24, 1996 at the
Haus am Koellnischen Park in Berlin (Tagungszentrum Berlin Mitte). It follows
the tradition of the Linux/Internet conference series (Heidelberg 1994 and
Berlin 1995) which has been since its inception one of the most important
meetings for Linux experts and developers. The conference is a must for those
who are interested in Linux technology and applications.

The main focus of the forthcoming conference is on current developments of
Linux and its various components. However, since Linux has become a well-
established and widespread system, the development of applications and
usage in commercial environments—even for mission critical purposes—is
another major conference topic. Moreover, the Internet in the context of
current Linux developments will be covered by various talks and presentations.

Key speakers of the conference will be Linus Torvalds, Theodore T'so and Alan
Cox. Because of the growing commercial interest in Linux, a trade show will be
part of the conference, featuring companies that offer products based on or
using Linux.

The conference will be organized by GUUG (Association of German Unix Users)
and supported by several companies (ASKnet, Fachbuchhandlung Lehmanns,
Lunetix, Thinking Objects) and publishers (Addison-Wesley, dpunkt, Thomson/
O'Reilly). Any profits from this event will be used to support Free Software
Projects.

For information or registration contact Ms Tauchert in the registration office
(Tel. +49-30-8207 406, Fax +49-30-8207 465, e-mail: info@linux-kongress.de ;
www.linux-kongress.de).

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:info@linux-kongress.de
http://www.linux-kongress.de

First Conference on Freely Redistributable Software

The First Conference on Freely Redistributable Software (sponsored by the Free
Software Foundation) will take place Friday to Monday, February 2-5, 1996 at
the Cambridge Center Marriott in Cambridge, MA. Keynote speakers will be
Linus Torvalds and Richard Stallman. The conference will feature two days of
tutorials on Linux (Phil Hughes), Advanced Emacs and GCC (Richard Stallman)
expect (Don Libes), PERL (Tom Christenson), and other topics, as well as
refereed papers.

Peter Salus will give seminars entitled ''Linux: An Open System For Everyone''
and “Installing and Running Linux.” The first seminar will look at Linux from its
beginnings through its current capabilities, including a look at what some
companies are currently doing with Linux. The seminar will conclude with a
look at the future of Linux. Peter's second seminar will consist of a ''Look Under
the Hood'' covering what makes up a Linux system, what you need, how to
install it and what to do when something goes wrong. Interconnectivity options
will also be addressed. Requests for registration materials and full programs
may be made by e-mail: conf96@gnu.ai.mit.edu); phone (617-542-5942) or fax
(617-542-2652).

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:conf96@gnu.ai.mit.edu
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

 Advanced search

Consultants Directory

This is a collection of all the consultant listings
printed in LJ 1996. For listings which changed
during that period, we used the version most
recently printed. The contact information is left as
it was printed, and may be out of date.

ACAY Network Computing Pty Ltd
Australian-based consulting firm specializing in: Turnkey Internet
solutions, firewall configuration and administration, Internet connectivity,
installation and support for CISCO routers and Linux.

Address:
Suite 4/77 Albert Avenue, Chatswood, NSW, 2067, Australia
+61-2-411-7340, FAX: +61-2-411-7325
sales@acay.com.au
http://www.acay.com.au

Aegis Information Systems, Inc.
Specializing in: System Integration, Installation, Administration,
Programming, and Networking on multiple Operating System platforms.

Address:
PO Box 730, Hicksville, New York 11802-0730
800-AEGIS-00, FAX: 800-AIS-1216
info@aegisinfosys.com
http://www.aegisinfosys.com/

American Group Workflow Automation
Certified Microsoft Professional, LanServer, Netware and UnixWare
Engineer on staff. Caldera Business Partner, firewalls, pre-configured
systems, world-wide travel and/or consulting. MS-Windows with Linux.

Address:
West Coast: PO Box 77551, Seattle, WA 98177-0551
206-363-0459
East Coast: 3422 Old Capitol Trail, Suite 1068, Wilmington, DE
19808-6192
302-996-3204
amergrp@amer-grp.com
http://www.amer-grp.com

https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1
mailto:sales@acay.com.au
http://www.acay.com.au
mailto:info@aegisinfosys.com
http://www.aegisinfosys.com/
mailto:amergrp@amer-grp.com
http://www.amer-grp.com

Bitbybit Information Systems
Development, consulting, installation, scheduling systems, database
interoperability.

Address:
Radex Complex, Kluyverweg 2A, 2629 HT Delft, The Netherlands
+31-(0)-15-2682569, FAX: +31-(0)-15-2682530
info@bitbybit-is.nl

Celestial Systems Design
General Unix consulting, Internet connectivity, Linux, and Caldera
Network Desktop sales, installation and support.

Address:
60 Pine Ave W #407, Montréal, Quebec, Canada H2W 1R2
514-282-1218, FAX 514-282-1218
cdsi@consultan.com

CIBER*NET
General Unix/Linux consulting, network connectivity, support, porting and
web development.

Address:
Derqui 47, 5501 Godoy Cruz, Mendoza, Argentina
22-2492
afernand@planet.losandes.com.ar

Cosmos Engineering
Linux consulting, installation and system administration. Internet
connectivity and WWW programming. Netware and Windows NT
integration.

Address:
213-930-2540, FAX: 213-930-1393
76244.2406@compuserv.com

Ian T. Zimmerman
Linux consulting.

Address:
PO Box 13445, Berkeley, CA 94712
510-528-0800-x19
itz@rahul.net

InfoMagic, Inc.
Technical Support; Installation & Setup; Network Configuration; Remote
System Administration; Internet Connectivity.

Address:
PO Box 30370, Flagstaff, AZ 86003-0370

mailto:info@bitbybit-is.nl
mailto:cdsi@consultan.com
mailto:afernand@planet.losandes.com.ar
mailto:76244.2406@compuserv.com
mailto:itz@rahul.net

602-526-9852, FAX: 602-526-9573
support@infomagic.com

Insync Design
Software engineering in C/C++, project management, scientific
programming, virtual teamwork.

Address:
10131 S East Torch Lake Dr, Alden MI 49612
616-331-6688, FAX: 616-331-6608
insync@ix.netcom.com

Internet Systems and Services, Inc.
Linux/Unix large system integration & design, TCP/IP network
management, global routing & Internet information services.

Address:
Washington, DC-NY area,
703-222-4243
bass@silkroad.com
http://www.silkroad.com/

Kimbrell Consulting
Product/Project Manager specializing in Unix/Linux/SunOS/Solaris/AIX/
HPUX installation, management, porting/software development including:
graphics adaptor device drivers, web server configuration, web page
development.

Address:
321 Regatta Ct, Austin, TX 78734
kimbrell@bga.com

Linux Consulting / Lu & Lu
Linux installation, administration, programming, and networking with IBM
RS/6000, HP-UX, SunOS, and Linux.

Address:
Houston, TX and Baltimore, MD
713-466-3696, FAX: 713-466-3654
fanlu@informix.com
plu@condor.cs.jhu.edu

Linux Consulting / Scott Barker
Linux installation, system administration, network administration,
internet connectivity and technical support.

Address:
Calgary, AB, Canada
403-285-0696, 403-285-1399
sbarker@galileo.cuug.ab.ca

mailto:support@infomagic.com
mailto:insync@ix.netcom.com
mailto:bass@silkroad.com
http://www.silkroad.com/
mailto:kimbrell@bga.com
mailto:fanlu@informix.com
mailto:plu@condor.cs.jhu.edu
mailto:sbarker@galileo.cuug.ab.ca

LOD Communications, Inc
Linux, SunOS, Solaris technical support/troubleshooting. System
installation, configuration. Internet consulting: installation, configuration
for networking hardware/software. WWW server, virtual domain
configuration. Unix Security consulting.

Address:
1095 Ocala Road, Tallahassee, FL 32304
800-446-7420
support@lod.com
http://www.lod.com/

Media Consultores
Linux Intranet and Internet solutions, including Web page design and
database integration.

Address:
Rua Jose Regio 176-Mindelo, 4480 Cila do Conde, Portugal
351-52-671-591, FAX: 351-52-672-431
http://www.clubenet.com/media/index.html/

Perlin & Associates
General Unix consulting, Internet connectivity, Linux installation, support,
porting.

Address:
1902 N 44th St, Seattle, WA 98103
206-634-0186
davep@nanosoft.com

R.J. Matter & Associates
Barcode printing solutions for Linux/UNIX. Royalty-free C source code and
binaries for Epson and HP Series II compatible printers.

Address:
PO Box 9042, Highland, IN 46322-9042
219-845-5247
71021.2654@compuserve.com

RTX Services/William Wallace
Tcl/Tk GUI development, real-time, C/C++ software development.

Address:
101 Longmeadow Dr, Coppell, TX 75109
214-462-7237
rtxserv@metronet.com
http://www.metronet.com/~rtserv/

Spano Net Solutions
Network solutions including configuration, WWW, security, remote

mailto:support@lod.com
http://www.lod.com/
http://www.clubenet.com/media/index.html/
mailto:davep@nanosoft.com
mailto:71021.2654@compuserve.com
mailto:rtxserv@metronet.com
http://www.metronet.com/~rtserv/

system administration, upkeep, planning and general Unix consulting.
Reasonable rates, high quality customer service. Free estimates.

Address:
846 E Walnut #268, Grapevine, TX 76051
817-421-4649
jeff@dfw.net

Systems Enhancements Consulting
Free technical support on most Operating Systems; Linux installation;
system administration, network administration, remote system
administration, internet connectivity, web server configuration and
integration solutions.

Address:
PO Box 298, 3128 Walton Blvd, Rochester Hills, MI 48309
810-373-7518, FAX: 818-617-9818
mlhendri@oakland.edu

tummy.com, ltd.
Linux consulting and software development.

Address:
Suite 807, 300 South 16th Street, Omaha NE 68102
402-344-4426, FAX: 402-341-7119
xvscan@tummy.com
http://www.tummy.com/

VirtuMall, Inc.
Full-service interactive and WWW Programming, Consulting, and
Development firm. Develops high-end CGI Scripting, Graphic Design, and
Interactive features for WWW sites of all needs.

Address:
930 Massachusetts Ave, Cambridge, MA 02139
800-862-5596, 617-497-8006, FAX: 617-492-0486
comments@virtumall.com

William F. Rousseau
Unix/Linux and TCP/IP network consulting, C/C++ programming, web
pages, and CGI scripts.

Address:
San Francisco Bay Area
510-455-8008, FAX: 510-455-8008
rousseau@aimnet.com

Zei Software
Experienced senior project managers. Linux/Unix/Critical business
software development; C, C++, Motif, Sybase, Internet connectivity.

mailto:jeff@dfw.net
mailto:mlhendri@oakland.edu
mailto:xvscan@tummy.com
http://www.tummy.com/
mailto:comments@virtumall.com
mailto:rousseau@aimnet.com

Address:
2713 Route 23, Newfoundland, NJ 07435
201-208-8800, FAX: 201-208-1888
art@zei.com

Archive Index Issue Table of Contents

 Advanced search

Copyright © 1994 - 2019 Linux Journal. All rights reserved.

mailto:art@zei.com
https://secure2.linuxjournal.com/ljarchive/LJ/tocindex.html
https://secure2.linuxjournal.com/ljarchive/LJ/021/toc021.html
https://secure2.linuxjournal.com/ljarchive/sphider/search.php?adv=1

	Features
	News and Articles
	Columns
	Directories & References
	An Introduction to Python
	Jeff Bauer
	Getting Started
	Libraries
	Python Has Real Class
	Look It Up!
	Where Do We Go from Here?

	Using Linux and DOS Together
	Marty Leisner
	Resizing Your Partitions
	Using Extended Partitions
	Using loadlin and config.sys
	The UMSDOS File System
	DOSEMU's View of File Systems
	Booting DOSEMU on Linux
	Booting from the Installed DOS System and
Win95
	Conclusions

	CVS: Version Control Beyond RCS
	Tom Morse
	A day in the Life of...,
	Fixing Bugs
	Contention
	Releases
	Summary

	The Quintessential Linux Benchmark
	Wim van Dorst
	Which Value to Expect
	The Most Frequently Asked Question
	Standalone BogoMips Program
	Complete Reference Table: BogoMips
Mini-HOWTO
	Benchmarking

	WEBsmith
	Phil Hughes

	Letters to the Editor
	Various
	LJ Founds a University (Not!)
	Perl Errata Sheet
	LJ Responds:

	From the Editor
	Michael K. Johnson
	Perspective

	System Administation: Maximizing System Security, Part 1
	Æleen Frisch
	What is Security?
	Security Resources
	Passwords and User Authentication
	Shadow Password Files
	Password Aging
	shadow's Configuration File
	Selecting Good Passwords
	Secondary Authentication
	Dialup Passwords
	sudo: Selective Access to root
	For More Information About System
Security

	New Products
	LJ Staff
	SCSIserver SC16
	Freedom Desktop for Linux
	FairCom releases Linux Server
	BOOT ROM for Workstations
	Chat Server Available
	Volant Corporation Announces
htmlscript

	The chmod Command
	Eric Goebelbecker
	Changing permissions
	Understanding chmod
	Directories
	Conditional execute
	Make it simple
	Do your math
	Power chmod
	Summary

	Linux on Alpha AXP—Milo, The Mini-loader
	David Rusling
	Milo
	Device drivers
	Using Milo
	Loading the Loader
	The Future

	Linux Universe
	Christopher Boscolo
	What Is Included
	Installation
	Configuration
	Summary

	Upcoming Events
	Phil Hughes
	First Conference on Freely Redistributable
Software

	Consultants Directory

